Medical image – based computational model of pulsatile flow in saccular aneurisms

Saccular aneurisms, swelling of a blood vessel, are investigated in order (i) to estimate the development risk of the wall lesion, before and after intravascular treatment, assuming that the pressure is the major factor, and (ii) to better plan medical interventions. Numerical simulations, using the finite element method, are performed in three-dimensional aneurisms. Computational meshes are derived from medical imaging data to take into account both between-subject and within-subject anatomical variability of the diseased vessel segment. The 3D reconstruction is associated with a faceted surface. A geometrical model is then obtained to be finally meshed for a finite element use. The pulsatile flow of incompressible Newtonian blood is illustrated by numerical simulations carried out in two saccular aneurism types, a side- and a terminal-aneurism. High pressure zones are observed in the aneurism cavity, especially in the terminal one.

[1]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[2]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  Raphaëlle Chaine,et al.  From medical images to computational meshes , 2002 .

[5]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[6]  Gabriel Taubin,et al.  Curve and surface smoothing without shrinkage , 1995, Proceedings of IEEE International Conference on Computer Vision.

[7]  Marc Thiriet,et al.  Computational flow models in cerebral congenital aneurisms: I. Steady flow , 2001 .

[8]  P. Frey Anisotropic surface remeshing , 2001 .

[9]  Jean-Frédéric Gerbeau,et al.  A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .

[10]  J. Boissonnat,et al.  Algorithmic Geometry: Frontmatter , 1998 .

[11]  M. Thiriet,et al.  Apports et limitations de la vélocimétrie par résonance magnétique en biomécanique. Mesures dans un embranchement plan symétrique , 1997 .

[12]  Frédéric Hecht,et al.  NSP1B3 : un logiciel pour resoudre les equations de Navier Stokes incompressible 3D , 1991 .

[13]  S. Chien,et al.  Chapter 26 – Biophysical Behavior of Red Cells in Suspensions , 1975 .

[14]  G. Ferguson Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms. , 1972, Journal of Neurosurgery.

[15]  Philippe G. Ciarlet,et al.  The Finite Element Method for Elliptic Problems. , 1981 .

[16]  Dieter W. Liepsch,et al.  Hemodynamic stress in terminal saccular aneurysms: A laser-doppler study , 2005, Heart and Vessels.

[17]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .

[18]  Shu Chien,et al.  Shear Dependence of Effective Cell Volume as a Determinant of Blood Viscosity , 1970, Science.

[19]  T. Liou,et al.  A review on in vitro studies of hemodynamic characteristics in terminal and lateral aneurysm models. , 1999, Proceedings of the National Science Council, Republic of China. Part B, Life sciences.

[20]  D. Holdsworth,et al.  Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. , 2003, AJNR. American journal of neuroradiology.

[21]  Michael M. Resch,et al.  Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm. , 1989, Biorheology.

[22]  M. Mossa Reply from Mohammed Mossa , 2001 .

[23]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[24]  Pascal Frey,et al.  YAMS A fully Automatic Adaptive Isotropic Surface Remeshing Procedure , 2001 .

[25]  Salah Naili,et al.  Entry Length and Wall Shear Stress in Uniformly Collapsed-Pipe Flow , 2003 .

[26]  D Poulikakos,et al.  Residence times and basins of attraction for a realistic right internal carotid artery with two aneurysms. , 2002, Biorheology.