Influence of temperature on patch residence time in parasitoids: physiological and behavioural mechanisms

[1]  G. Boivin,et al.  Temperature influences host instar selection in an aphid parasitoid: support for the relative fitness rule , 2015 .

[2]  J. Ellers,et al.  Thermal change alters the outcome of behavioural interactions between antagonistic partners , 2014 .

[3]  G. Boivin,et al.  Sex ratio variations with temperature in an egg parasitoid: behavioural adjustment and physiological constraint , 2014, Animal Behaviour.

[4]  P. Coquillard,et al.  Optimal within-patch movement strategies for optimising patch residence time: an agent-based modelling approach , 2013, Behavioral Ecology and Sociobiology.

[5]  G. Ma,et al.  Climate warming may increase aphids' dropping probabilities in response to high temperatures. , 2012, Journal of insect physiology.

[6]  P. Vernon,et al.  Evolution of metabolic rate in a parasitic wasp: the role of limitation in intrinsic resources. , 2012, Journal of insect physiology.

[7]  P. Louâpre,et al.  Carbon dioxide narcosis modifies the patch leaving decision of foraging parasitoids , 2012, Animal Cognition.

[8]  E. Wajnberg Multi-objective behavioural mechanisms are adopted by foraging animals to achieve several optimality goals simultaneously. , 2012, The Journal of animal ecology.

[9]  A. Sentis,et al.  Using functional response modeling to investigate the effect of temperature on predator feeding rate and energetic efficiency , 2012, Oecologia.

[10]  M. Kaltenpoth,et al.  Larval Rearing Temperature Influences Amount and Composition of the Marking Pheromone of the Male Beewolf, Philanthus triangulum , 2010, Journal of insect science.

[11]  C. Anselme,et al.  Evolutionary ecology of the interactions between aphids and their parasitoids. , 2010, Comptes rendus biologies.

[12]  L. Giraldeau,et al.  Travel time affects optimal diets in depleting patches , 2010, Behavioral Ecology and Sociobiology.

[13]  J. McNeil,et al.  Chemical and Behavioral Ecology in Insect Parasitoids: How to Behave Optimally in a Complex Odorous Environment , 2008 .

[14]  C. Bernstein,et al.  Information Acquisition, Information Processing, and Patch Time Allocation in Insect Parasitoids , 2008 .

[15]  T. Miyatake,et al.  Negative relationship between ambient temperature and death‐feigning intensity in adult Callosobruchus maculatus and Callosobruchus chinensis , 2008 .

[16]  T. Meiners,et al.  Oviposition at low temperatures - late season negatively affects the leaf beetle Galeruca tanaceti (Coleoptera: Galerucinae) but not its specialised egg parasitoid Oomyzus galerucivorus (Hymenoptera: Eulophidae) , 2006 .

[17]  E. Wajnberg,et al.  Time allocation strategies in insect parasitoids: from ultimate predictions to proximate behavioral mechanisms , 2006, Behavioral Ecology and Sociobiology.

[18]  C. Bernstein,et al.  The influence of temperature and host availability on the host exploitation strategies of sexual and asexual parasitic wasps of the same species , 2006, Oecologia.

[19]  A. Cortesero,et al.  Patch exploitation strategies of parasitic wasps under intraspecific competition , 2005 .

[20]  G. Boivin,et al.  Effect of low temperature exposure on oviposition behaviour and patch exploitation strategy in parasitic wasps , 2005, Animal Behaviour.

[21]  Jean-Sébastien Pierre,et al.  Effects of within- and among-patch experiences on the patch-leaving decision rules in an insect parasitoid , 2005, Behavioral Ecology and Sociobiology.

[22]  M. Angilletta,et al.  Temperature, Growth Rate, and Body Size in Ectotherms: Fitting Pieces of a Life-History Puzzle1 , 2004, Integrative and comparative biology.

[23]  E. Wajnberg,et al.  Genetic variation in the mechanisms of direct mutual interference in a parasitic wasp: consequences in terms of patch‐time allocation , 2004 .

[24]  M. Keller,et al.  Patch Time Allocation by the Parasitoid Diadegma semiclausum (Hymenoptera: Ichneumonidae). III. Effects of Kairomone Sources and Previous Parasitism , 2004, Journal of Insect Behavior.

[25]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[26]  E. Wajnberg,et al.  Optimal patch residence time in egg parasitoids: innate versus learned estimate of patch quality , 2004, Oecologia.

[27]  Eric Wajnberg,et al.  A comparative analysis of patch-leaving decision rules in a parasitoid family. , 2003, The Journal of animal ecology.

[28]  D. Mann Modelling Survival Data in Medical Research , 2003 .

[29]  M. Keller,et al.  Patch Time Allocation by the Parasitoid Diadegma semiclausum (Hymenoptera: Ichneumonidae). I. Effect of Interpatch Distance , 2003, Journal of Insect Behavior.

[30]  Xingeng Wang,et al.  A comparison of the host‐searching efficiency of two larval parasitoids of Plutella xylostella , 2002 .

[31]  E. Wajnberg,et al.  Can imperfect host discrimination explain partial patch exploitation in parasitoids? , 2001 .

[32]  Hugh P. Possingham,et al.  Using Cox's proportional hazard models to implement optimal strategies: An example from behavioural ecology , 2001 .

[33]  B. Roitberg,et al.  Effects of contact kairomone and experience on initial giving‐up time , 1997 .

[34]  G. Gilchrist A QUANTITATIVE GENETIC ANALYSIS OF THERMAL SENSITIVITY IN THE LOCOMOTOR PERFORMANCE CURVE OF APHIDIUS ERVI , 1996, Evolution; international journal of organic evolution.

[35]  J. M. Nelson,et al.  Flexible patch time allocation by the leafminer parasitoid, Opius dimidiatus , 1995 .

[36]  D. Collett Modelling Survival Data in Medical Research , 1994 .

[37]  J. V. Lenteren,et al.  Influence of intrapatch experiences and temperature on the time allocation of the whitefly parasitoidEncarsia formosa (Hymenoptera: Aphelinidae) , 1994, Journal of Insect Behavior.

[38]  M. Mangel,et al.  Life expectancy and reproduction , 1993, Nature.

[39]  Marc Mangel,et al.  Seasonal dynamic shifts in patch exploitation by parasitic wasps. , 1992 .

[40]  L. Dill,et al.  The economics of escape behaviour in the pea aphid, Acyrthosiphon pisum , 1990, Oecologia.

[41]  P. Grambsch,et al.  Martingale-based residuals for survival models , 1990 .

[42]  R. Huey,et al.  Evolution of thermal sensitivity of ectotherm performance. , 1989, Trends in ecology & evolution.

[43]  M. Mangel,et al.  On the evolutionary ecology of marking pheromones , 1988, Evolutionary Ecology.

[44]  A. Dixon,et al.  Cereal aphid populations and the relation between mean density and spatial variance , 1986, Netherlands Journal of Plant Pathology.

[45]  Y. Suzuki,et al.  Sex allocation and effects of superparasitism on secondary sex ratios in the gregarious parasitoid, Trichogramma chilonis (Hymenoptera: Trichogrammatidae) , 1984, Animal Behaviour.

[46]  Per Kragh Andersen,et al.  Testing Goodness of Fit of Cox's Regression and Life Model , 1982 .

[47]  Y. Iwasa,et al.  Prey Distribution as a Factor Determining the Choice of Optimal Foraging Strategy , 1981, The American Naturalist.

[48]  J. Waage,et al.  Foraging for patchily-distributed hosts by the parasitoid, Nemeritis canescens , 1979 .

[49]  E. Charnov Optimal foraging, the marginal value theorem. , 1976, Theoretical population biology.

[50]  Y. Outreman,et al.  First in, last out: asymmetric competition influences patch exploitation of a parasitoid , 2011 .

[51]  E. Wajnberg,et al.  Genetic variation in patch time allocation in a parasitic wasp , 1999 .

[52]  S. Nylin,et al.  Plasticity in life-history traits. , 1998, Annual review of entomology.

[53]  C. Vigneault,et al.  AUTOMATED SYSTEM TO QUANTIFY THE BEHAVIOR OF SMALL INSECTS IN A FOUR-POINTED STAR OLFACTOMETER , 1997 .

[54]  A. Kacelnik,et al.  A count-down mechanism for host search in the parasitoid Venturia canescens , 1995 .

[55]  D.,et al.  Regression Models and Life-Tables , 2022 .