Minimum Braids: A Complete Invariant of Knots and Links

Minimum braids are a complete invariant of knots and links. This paper defines minimum braids, describes how they can be generated, presents tables for knots up to ten crossings and oriented links up to nine crossings, and uses minimum braids to study graph trees, amphicheirality, unknotting numbers, and periodic tables.

[1]  Westone,et al.  Home Page , 2004, 2022 2nd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA).

[2]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[3]  D. Rolfsen Knots and Links , 2003 .

[4]  Lenhard L. Ng Maximal Thurston-Bennequin Number of Two-Bridge Links , 2000, math/0008242.

[5]  C. Cerf,et al.  A topological invariant to predict the three-dimensional writhe of ideal configurations of knots and links. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Weeks,et al.  The first 1,701,936 knots , 1998 .

[7]  J. Dubochet,et al.  Geometry and physics of knots , 1996, Nature.

[8]  J. Hoste,et al.  A tabulation of oriented links , 1991 .

[9]  V. Jones Hecke algebra representations of braid groups and link polynomials , 1987 .

[10]  J. W. Alexander Topological invariants of knots and links , 1928 .

[11]  K. Murasugi,et al.  A study of braids , 1999 .

[12]  Akio Kawauchi,et al.  A Survey of Knot Theory , 1996 .

[13]  J. Weeks,et al.  Hyperbolic invariants of knots and links , 1991 .

[14]  Louis H. Kauffman,et al.  Formal Knot Theory , 1983 .

[15]  G. Budworth The Knot Book , 1983 .

[16]  W. Thurston The geometry and topology of 3-manifolds , 1979 .

[17]  Frank Harary,et al.  Graph Theory , 2016 .