Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks

Achieving a real understanding of animal development obviously requires a comprehensive rather than partial identification of the genes working in each developmental process. Recent decoding of genome sequences will enable us to perform such studies. An ascidian, Ciona intestinalis, one of the animals whose genome has been sequenced, is a chordate sharing a basic body plan with vertebrates, although its genome contains less paralogs than are usually seen in vertebrates. In the present study, we discuss the genomewide approach to networks of developmental genes in Ciona embryos. We focus on transcription factor genes and some major groups of signal transduction genes. These genes are comprehensively listed and examined with regard to their embryonic expression by in situ hybridization (http://ghost.zool.kyoto-u.ac.jp/tfst.html). The results revealed that 74% of the transcription factor genes are expressed maternally and that 56% of the genes are zygotically expressed during embryogenesis. Of these, 34% of the transcription factor genes are expressed both maternally and zygotically. The number of zygotically expressed transcription factor genes increases gradually during embryogenesis. As an example, and taking advantage of this comprehensive description of gene expression profiles, we identified transcription factor genes and signal transduction genes that are expressed at the early gastrula stage and that work downstream of β-catenin, FoxD and/or Fgf9/16/20. Because these three genes are essential for ascidian endomesoderm specification, transcription factor genes and signal transduction genes involved in each of the downstream processes can be deduced comprehensively using the present approach.

[1]  W. Jeffery,et al.  Chasing tails in ascidians: developmental insights into the origin and evolution of chordates. , 1995, Trends in genetics : TIG.

[2]  N. Satoh,et al.  Posterior end mark 2 (pem-2), pem-4, pem-5, and pem-6: maternal genes with localized mRNA in the ascidian embryo. , 1997, Developmental biology.

[3]  L. Hood,et al.  A Genomic Regulatory Network for Development , 2002, Science.

[4]  N. Satoh,et al.  macho-1-related genes in Ciona embryos , 2002, Development Genes and Evolution.

[5]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[6]  M. Levine,et al.  Regulation of Ci-tropomyosin-like, a Brachyury target gene in the ascidian, Ciona intestinalis. , 1999, Development.

[7]  N. Satoh,et al.  Early embryonic expression of FGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos. , 2002, Development.

[8]  N. Satoh,et al.  Early embryonic expression of a LIM-homeobox gene Cs-lhx3 is downstream of beta-catenin and responsible for the endoderm differentiation in Ciona savignyi embryos. , 2001, Development.

[9]  N. Satoh,et al.  (beta)-catenin mediates the specification of endoderm cells in ascidian embryos. , 2000, Development.

[10]  N. Satoh,et al.  A genomewide survey of developmentally relevant genes in Ciona intestinalis , 2003, Development Genes and Evolution.

[11]  R. Lauro,et al.  Identification and developmental expression of three Distal-less homeobox containing genes in the ascidian Ciona intestinalis , 2000, Mechanisms of Development.

[12]  N. Satoh,et al.  Fgf genes in the basal chordate Ciona intestinalis , 2002, Development Genes and Evolution.

[13]  B. Degnan,et al.  A genomewide survey of developmentally relevant genes in Ciona intestinalis , 2003, Development Genes and Evolution.

[14]  N. Satoh,et al.  Posterior end mark, a novel maternal gene encoding a localized factor in the ascidian embryo. , 1996, Development.

[15]  Takeshi Kawashima,et al.  A cDNA resource from the basal chordate Ciona intestinalis , 2002, Genesis.

[16]  M. Levine,et al.  Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. , 1997, Development.

[17]  M. Levine,et al.  Ascidian embryogenesis and the origins of the chordate body plan. , 1998, Current opinion in genetics & development.

[18]  N. Satoh,et al.  A genomewide survey of developmentally relevant genes in Ciona intestinalis , 2003, Development Genes and Evolution.

[19]  William C. Smith,et al.  An ascidian engrailed gene , 2002, Development Genes and Evolution.

[20]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[21]  N. Satoh,et al.  Developmental Biology of Ascidians , 1995 .

[22]  A. Spagnuolo,et al.  Expression and functional analysis of Cititf1, an ascidian NK-2 class gene, suggest its role in endoderm development. , 1999, Development.

[23]  R. Tjian,et al.  Transcription regulation and animal diversity , 2003, Nature.

[24]  N. Satoh,et al.  Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. I. Up to the eight-cell stage. , 1983, Developmental biology.

[25]  M. Levine,et al.  A genomewide survey of developmentally relevant genes in Ciona intestinalis , 2003, Development Genes and Evolution.

[26]  M. Levine,et al.  The snail repressor establishes a muscle/notochord boundary in the Ciona embryo. , 1998, Development.

[27]  Y. Kohara,et al.  Gene expression profiles in Ciona intestinalis tailbud embryos. , 2001, Development.

[28]  Y. Kohara,et al.  Gene expression profiles in tadpole larvae of Ciona intestinalis. , 2002, Developmental biology.

[29]  C. M. Child The Organization and Cell-lineage of the Ascidian Egg , 1906 .

[30]  Nori Satoh,et al.  The ascidian tadpole larva: comparative molecular development and genomics , 2003, Nature Reviews Genetics.

[31]  Naoto Ueno,et al.  Construction of a cDNA Microarray Derived from the Ascidian Ciona intestinalis , 2003, Zoological science.

[32]  N. Satoh,et al.  Region specific gene expressions in the central nervous system of the ascidian embryo , 2002, Mechanisms of Development.

[33]  G. Ruvkun,et al.  The taxonomy of developmental control in Caenorhabditis elegans. , 1998, Science.

[34]  Michael Levine,et al.  The Ascidian as a Model Organism in Developmental and Evolutionary Biology , 2001, Cell.

[35]  Vincent Bertrand,et al.  Neural Tissue in Ascidian Embryos Is Induced by FGF9/16/20, Acting via a Combination of Maternal GATA and Ets Transcription Factors , 2003, Cell.

[36]  H. Nishida,et al.  macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis , 2001, Nature.

[37]  N. Satoh,et al.  A Twist-like bHLH gene is a downstream factor of an endogenous FGF and determines mesenchymal fate in the ascidian embryos , 2003, Development.

[38]  Y. Kohara,et al.  Profiles of maternally expressed genes in fertilized eggs of Ciona intestinalis. , 2001, Developmental biology.

[39]  N. Satoh,et al.  Developmental gene activities in ascidian embryos. , 1999, Current opinion in genetics & development.

[40]  N. Satoh,et al.  A genomewide survey of developmentally relevant genes , 2003 .

[41]  Michael Levine,et al.  Ciona intestinalis: an emerging model for whole-genome analyses. , 2003, Trends in genetics : TIG.

[42]  K. Turksen,et al.  Isolation and characterization , 2006 .

[43]  N. Satoh,et al.  Genomewide surveys of developmentally relevant genes in Ciona intestinalis , 2003, Development Genes and Evolution.

[44]  N. Satoh,et al.  Function of vertebrate T gene , 1993, Nature.

[45]  K. Hotta,et al.  Characterization of Brachyury-downstream notochord genes in the Ciona intestinalis embryo. , 2000, Developmental biology.

[46]  Yutaka Satou,et al.  Multiple functions of a Zic-like gene in the differentiation of notochord, central nervous system and muscle in Ciona savignyi embryos. , 2002, Development.

[47]  K. Hotta,et al.  Brachyury downstream notochord differentiation in the ascidian embryo. , 1999, Genes & development.

[48]  Kaoru Sato Isolation and characterization of β-catenin downstream genes in early embryos of the ascidian Ciona savignyi. , 2003 .

[49]  M. Levine,et al.  Suppressor of hairless activates brachyury expression in the Ciona embryo. , 1998, Developmental biology.

[50]  H. Nishida,et al.  Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. , 1987, Developmental biology.

[51]  N. Satoh,et al.  Conservation of the developmental role of Brachyury in notochord formation in a urochordate, the ascidian Balocynthia roretzi. , 1998, Developmental biology.

[52]  N. Satoh,et al.  An essential role of a FoxD gene in notochord induction in Ciona embryos. , 2002, Development.

[53]  N. Satoh,et al.  The ascidian Mesp gene specifies heart precursor cells , 2004, Development.

[54]  M. Levine,et al.  Dorsoventral patterning of the vertebrate neural tube is conserved in a protochordate. , 1997, Development.

[55]  Y. Kohara,et al.  Gene expression profiles in young adult Ciona intestinalis , 2002, Development Genes and Evolution.

[56]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[57]  Paul Richardson,et al.  The Draft Genome of Ciona intestinalis: Insights into Chordate and Vertebrate Origins , 2002, Science.

[58]  N. Satoh,et al.  A zinc finger transcription factor, ZicL, is a direct activator of Brachyury in the notochord specification of Ciona intestinalis , 2004, Development.

[59]  H. Nishida Specification of developmental fates in ascidian embryos: molecular approach to maternal determinants and signaling molecules. , 2002, International review of cytology.

[60]  J. J. Lee,et al.  The single MyoD family gene of Ciona intestinalis encodes two differentially expressed proteins: implications for the evolution of chordate muscle gene regulation. , 1997, Development.