Analysis of the Relationship between Land Surface Temperature and Wildfire Severity in a Series of Landsat Images

The paper assesses spatio-temporal patterns of land surface temperature (LST) and fire severity in the Las Hurdes wildfire of Pinus pinaster forest, which occurred in July 2009, in Extremadura (Spain), from a time series of fifteen Landsat 5 TM images corresponding to 27 post-fire months. The differenced Normalized Burn Ratio (dNBR) was used to evaluate burn severity. The mono-window algorithm was applied to estimate LST from the Landsat thermal band. The burned zones underwent a significant increase in LST after fire. Statistically significant differences have been detected between the LST within regions of burn severity categories. More substantial changes in LST are observed in zones of greater fire severity, which can be explained by the lower emissivity of combustion products found in the burned area and changes in the energy balance related to vegetation removal. As time progresses over the 27 months after fire, LST differences decrease due to vegetation regeneration. The differences in LST and Normalized Difference Vegetation Index (NDVI) values between burn severity categories in each image are highly correlated (r = 0.84). Spatial patterns of severity and post-fire LST obtained from Landsat time series enable an evaluation of the relationship between these variables to predict the natural dynamics of burned areas.

[1]  P. Fulé,et al.  Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data , 2005 .

[2]  J. W. Wagtendonk,et al.  Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity , 2004 .

[3]  Zhao-Liang Li,et al.  Quantitative Remote Sensing in Thermal Infrared: Theory and Applications , 2014 .

[4]  P. Mausel,et al.  Assessment of vegetation change in a fire-altered forest landscape. , 1990 .

[5]  T. J. Majumdar,et al.  Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data , 2009 .

[6]  F. Lloret,et al.  Influence of fire severity on plant regeneration by means of remote sensing imagery , 2003 .

[7]  Emilio Chuvieco,et al.  GeoCBI: A modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data , 2009 .

[8]  J. Keeley Fire intensity, fire severity and burn severity: a brief review and suggested usage , 2009 .

[9]  S. Escuin,et al.  Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images , 2008 .

[10]  D. Riaño,et al.  Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating , 2004 .

[11]  Luis Gil Sánchez,et al.  Pinus pinaster Aiton en el paisaje vegetal de la Península Ibérica , 1990 .

[12]  Miquel Ninyerola,et al.  Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Joshua J. Picotte,et al.  Validation of remote sensing of burn severity in south-eastern US ecosystems , 2011 .

[14]  G. Gutman,et al.  The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models , 1998 .

[15]  George P. Petropoulos,et al.  Quantifying spatial and temporal vegetation recovery dynamics following a wildfire event in a Mediterranean landscape using EO data and GIS , 2014 .

[16]  Martha C. Anderson,et al.  Advances in thermal infrared remote sensing for land surface modeling , 2009 .

[17]  Carol Miller,et al.  A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio , 2014, Remote. Sens..

[18]  José A. Sobrino,et al.  A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data , 2001 .

[19]  D. Verbyla,et al.  Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM , 2005 .

[20]  M. D. Schwartz Phenology: An Integrative Environmental Science , 2003, Tasks for Vegetation Science.

[21]  Eric F. Lambin,et al.  Remotely-sensed indicators of burning efficiency of savannah and forest fires , 2003 .

[22]  Copertino Comparison of algorithms to retrieve Land Surface Temperature from LANDSAT-7 ETM+ IR data in the Basilicata Ionian band , 2012 .

[23]  R. Alía,et al.  Growth phenology and mating system of maritime pine (Pinus pinaster Aiton) in central Spain , 2002 .

[24]  F. M. Danson,et al.  Use of a radiative transfer model to simulate the postfire spectral response to burn severity , 2006 .

[25]  Raymond F. Kokaly,et al.  Postfire soil burn severity mapping with hyperspectral image unmixing , 2007 .

[26]  David M. Richardson,et al.  Pines of the Mediterranean Basin , 1998 .

[27]  Juan de la Riva,et al.  Estimating burn severity at the regional level using optically based indices , 2011 .

[28]  B. A. Park,et al.  Assessing the differenced Normalized Burn Ratio ’ s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska ’ s national parks , 2008 .

[29]  O. Viedma,et al.  Modeling rates of ecosystem recovery after fires by using landsat TM data , 1997 .

[30]  Dennis D. Baldocchi,et al.  Terrestrial Biosphere-Atmosphere Fluxes , 2014 .

[31]  S. A. Lewis,et al.  Remote sensing techniques to assess active fire characteristics and post-fire effects , 2006 .

[32]  José A. Sobrino,et al.  Land surface temperature retrieval from LANDSAT TM 5 , 2004 .

[33]  N. U. Ahmed,et al.  Relations between evaporation coefficients and vegetation indices studied by model simulations , 1994 .

[34]  J. Sobrino,et al.  A generalized single‐channel method for retrieving land surface temperature from remote sensing data , 2003 .

[35]  G. Roberts,et al.  Thermal remote sensing of active vegetation fires and biomass burning events [Chapter 18] , 2013 .

[36]  Luis Gil,et al.  Canopy seed banks in Mediterranean pines of south‐eastern Spain: a comparison between Pinus halepensis Mill., P. pinaster Ait., P. nigra Arn. and P. pinea L. , 2001 .

[37]  L. Hutley,et al.  Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia , 2003 .

[38]  F. Maselli,et al.  Using SPOT images and field sampling to map burn severity and vegetation factors affecting post forest fire erosion risk , 2008 .

[39]  C. Tucker,et al.  Increased plant growth in the northern high latitudes from 1981 to 1991 , 1997, Nature.

[40]  Julia A. Barsi,et al.  Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982–2010) , 2012 .

[41]  Ioannis Z. Gitas,et al.  Remote Sensing of Burn Severity , 2020, Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires.

[42]  Juan de la Riva,et al.  Assessment of Methods for Land Surface Temperature Retrieval from Landsat-5 TM Images Applicable to Multiscale Tree-Grass Ecosystem Modeling , 2014, Remote. Sens..

[43]  Bryan Butler,et al.  Precipitable Water at the VLA | 1990 { 1998 , 1998 .

[44]  Sander Veraverbeke,et al.  The temporal dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: the case of the large 2007 Peloponnese wildfires in Greece. , 2010 .

[45]  Carol Miller,et al.  Correction: Parks, S.A.; Dillon, G.K.; Miller, C. A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio. Remote Sens, 2014, 6, 1827-1844 , 2014, Remote. Sens..

[46]  Ning Wang,et al.  Land surface emissivity retrieval from satellite data , 2013 .

[47]  Stefan Dech,et al.  Thermal Infrared Remote Sensing:Sensors, Methods, Applications , 2015 .

[48]  Jason Beringer,et al.  Local boundary-layer development over burnt and unburnt tropical savanna: an observational study , 2007 .

[49]  C. Chafer,et al.  A comparison of fire severity measures: An Australian example and implications for predicting major areas of soil erosion , 2008 .

[50]  Jan Verbesselt,et al.  A pixel based regeneration index using time series similarity and spatial context , 2010 .

[51]  Andrew T. Hudak,et al.  Burn Severity of Areas Reburned by Wildfires in the Gila National Forest, New Mexico, USA , 2010 .

[52]  R. Simpson On The Computation of Equivalent Potential Temperature , 1978 .

[53]  M. Romaguera,et al.  Thermal remote sensing in the framework of the SEN2FLEX project: field measurements, airborne data and applications , 2008 .

[54]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[55]  Emilio Chuvieco,et al.  Assessment of vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa Monica Mountains , 2002 .

[56]  H. Jones,et al.  Remote Sensing of Vegetation: Principles, Techniques, and Applications , 2010 .

[57]  Ruben Van De Kerchove,et al.  Assessment of post-fire changes in land surface temperature and surface albedo, and their relation with fire–burn severity using multitemporal MODIS imagery , 2012 .

[58]  John R. Schott,et al.  Validation of a web-based atmospheric correction tool for single thermal band instruments , 2005, SPIE Optics + Photonics.

[59]  M. Novello,et al.  Geodesic motion and confinement in Gödel's universe , 1983 .

[60]  Peter R. Robichaud,et al.  Field validation of Burned Area Reflectance Classification (BARC) products for post fire assessment , 2004 .

[61]  A. Karnieli,et al.  A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region , 2001 .

[62]  I. S. Bowen The Ratio of Heat Losses by Conduction and by Evaporation from any Water Surface , 1926 .

[63]  Julia A. Barsi,et al.  An Atmospheric Correction Parameter Calculator for a single thermal band earth-sensing instrument , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[64]  Rosa Lasaponara,et al.  Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbance , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[65]  F. J. Kriegler,et al.  Preprocessing Transformations and Their Effects on Multispectral Recognition , 1969 .

[66]  Sander Veraverbeke,et al.  Evaluating Spectral Indices for Assessing Fire Severity in Chaparral Ecosystems (Southern California) Using MODIS/ASTER (MASTER) Airborne Simulator Data , 2011, Remote. Sens..

[67]  E. Chuvieco,et al.  Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models , 2007 .

[68]  José A. Sobrino,et al.  Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco , 2000 .

[69]  N. Coops,et al.  Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. , 2010 .

[70]  Raymond F. Kokaly,et al.  Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing , 2007 .

[71]  M. Wimberly,et al.  Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery , 2007 .

[72]  Eva Rubio,et al.  Emissivity measurements of several soils and vegetation types in the 8–14, μm Wave band: Analysis of two field methods , 1997 .

[73]  Jan Verbesselt,et al.  Assessing intra-annual vegetation regrowth after fire using the pixel based regeneration index , 2011 .

[74]  José A. Sobrino,et al.  Satellite-derived land surface temperature: Current status and perspectives , 2013 .

[75]  George W. Koch,et al.  Persistent effects of fire-induced vegetation change on energy partitioning and evapotranspiration in ponderosa pine forests , 2009 .

[76]  D. Opitz,et al.  Classifying and mapping wildfire severity : A comparison of methods , 2005 .

[77]  Xavier Pons,et al.  Spatial patterns of forest fires in Catalonia (NE of Spain) along the period 1975–1995: Analysis of vegetation recovery after fire , 2001 .

[78]  Juan de la Riva,et al.  Effects of Fire on Vegetation, Soil and Hydrogeomorphological Behavior in Mediterranean Ecosystems , 2009 .

[79]  S. Hook,et al.  Evaluating spectral indices for burned area discrimination using MODIS/ASTER (MASTER) airborne simulator data , 2011 .

[80]  Marcelino Núñez Corchero,et al.  Climatología de Extremadura (1961-1990) , 2001 .

[81]  R. Landry,et al.  Remote sensing of burn severity: experience from western Canada boreal fires* , 2008 .

[82]  S. A. Lewis,et al.  The Relationship of Multispectral Satellite Imagery to Immediate Fire Effects , 2007 .

[83]  V. Caselles,et al.  Mapping land surface emissivity from NDVI: Application to European, African, and South American areas , 1996 .