Multiphoton tools for hydrogen peroxide imaging in vivo with subcellular resolution

[1]  Yuxun Lu,et al.  Quantification and visualization of hydrogen peroxide in an ischemic model and serum samples from stroke patients using a reaction-based fluorescence sensor , 2023, Sensors and Actuators B: Chemical.

[2]  Evgeny A. Stepanov,et al.  Hyperglycemia exacerbates ischemic stroke not through increased generation of hydrogen peroxide. , 2023, Free radical biology & medicine.

[3]  R. A. Sokolov,et al.  Chemogenetic emulation of intraneuronal oxidative stress affects synaptic plasticity , 2023, Redox biology.

[4]  A. Zheltikov,et al.  Implantable graded‐index fibers for neural‐dynamics‐resolving brain imaging in awake mice on an air‐lifted platform , 2022, Journal of biophotonics.

[5]  A. A. Lanin,et al.  Real‐time fiber‐optic recording of acute‐ischemic‐stroke signatures , 2022, Journal of biophotonics.

[6]  A. A. Lanin,et al.  Adaptive Wave-Front Shaping and Beam Focusing through Fiber Bundles for High-Resolution Bioimaging , 2021, Photonics.

[7]  Chris Xu,et al.  Imaging deeper than the transport mean free path with multiphoton microscopy. , 2021, Biomedical optics express.

[8]  A. Zheltikov,et al.  In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model , 2021, Redox biology.

[9]  T. Michel,et al.  Chemogenetic Approaches to Probe Redox Pathways: Implications for Cardiovascular Pharmacology and Toxicology. , 2021, Annual review of pharmacology and toxicology.

[10]  Michael Schramm,et al.  Reactive Oxygen Species: Not Omnipresent but Important in Many Locations , 2021, Frontiers in Cell and Developmental Biology.

[11]  A. A. Lanin,et al.  Single‐beam dual‐color alternate‐pathway two‐photon spectroscopy: Toward an optical toolbox for redox biology , 2021, Journal of Raman Spectroscopy.

[12]  A. A. Lanin,et al.  Enhanced‐contrast two‐photon optogenetic pH sensing and pH‐resolved brain imaging , 2020, Journal of biophotonics.

[13]  V. Belousov,et al.  In Vivo Imaging with Genetically Encoded Redox Biosensors , 2020, International journal of molecular sciences.

[14]  Xianwei Wang,et al.  ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes , 2020, Redox biology.

[15]  A. A. Lanin,et al.  High-energy self-mode-locked Cr:forsterite laser near the soliton blowup threshold. , 2020, Optics letters.

[16]  Natalie M. Mishina,et al.  Ultrasensitive Genetically Encoded Indicator for Hydrogen Peroxide Identifies Roles for the Oxidant in Cell Migration and Mitochondrial Function. , 2020, Cell metabolism.

[17]  A. A. Lanin,et al.  Cell-specific three-photon-fluorescence brain imaging: neurons, astrocytes, and gliovascular interfaces. , 2020, Optics letters.

[18]  A. A. Lanin,et al.  Two‐ and three‐photon absorption cross‐section characterization for high‐brightness, cell‐specific multiphoton fluorescence brain imaging , 2020, Journal of biophotonics.

[19]  A. A. Lanin,et al.  Stain-free subcellular-resolution astrocyte imaging using third-harmonic generation. , 2019, Optics letters.

[20]  F. Antunes,et al.  Measuring intracellular concentration of hydrogen peroxide with the use of genetically encoded H2O2 biosensor HyPer , 2019, Redox biology.

[21]  M. Drobizhev,et al.  Understanding the Fluorescence Change in Red Genetically Encoded Calcium Ion Indicators , 2019, Biophysical journal.

[22]  Lyubov V Amitonova,et al.  Compressive imaging through a multimode fiber. , 2018, Optics letters.

[23]  T. Michel,et al.  Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction , 2018, Nature Communications.

[24]  Daan H. de Groot,et al.  In vivo characterisation of fluorescent proteins in budding yeast , 2018, Scientific Reports.

[25]  M. Long,et al.  Redox Signaling by Reactive Electrophiles and Oxidants. , 2018, Chemical reviews.

[26]  V. Belousov,et al.  In Vivo Imaging of Hydrogen Peroxide with HyPer Probes. , 2018, Antioxidants & redox signaling.

[27]  I. Yampolsky,et al.  SypHer3s: a genetically encoded fluorescent ratiometric probe with enhanced brightness and an improved dynamic range. , 2018, Chemical communications.

[28]  J. Loscalzo,et al.  Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism , 2017, Nature Methods.

[29]  I. Katic,et al.  NADPH oxidase-mediated redox signaling promotes oxidative stress resistance and longevity through memo-1 in C. elegans , 2017, eLife.

[30]  Angelito A. Bernardo,et al.  What is the concentration of hydrogen peroxide in blood and plasma? , 2016, Archives of biochemistry and biophysics.

[31]  Katharina Dietrich,et al.  Redox Indicator Mice Stably Expressing Genetically Encoded Neuronal roGFP: Versatile Tools to Decipher Subcellular Redox Dynamics in Neuropathophysiology. , 2016, Antioxidants & redox signaling.

[32]  Filippo Del Bene,et al.  Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development. , 2016, Developmental biology.

[33]  T. Dick,et al.  Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. , 2016, Nature chemical biology.

[34]  V. Belousov,et al.  HyPer Family Probes: State of the Art. , 2016, Antioxidants & redox signaling.

[35]  Y. Fujikawa,et al.  Mouse redox histology using genetically encoded probes , 2016, Science Signaling.

[36]  Carole Gauron,et al.  Nerves Control Redox Levels in Mature Tissues Through Schwann Cells and Hedgehog Signaling , 2016, Antioxidants & redox signaling.

[37]  E. McGhee,et al.  Polarized Cell Motility Induces Hydrogen Peroxide to Inhibit Cofilin via Cysteine Oxidation , 2015, Current Biology.

[38]  G. Bao,et al.  Response properties of the genetically encoded optical H2O2 sensor HyPer. , 2014, Free radical biology & medicine.

[39]  H. Forman,et al.  An overview of mechanisms of redox signaling. , 2014, Journal of molecular and cellular cardiology.

[40]  H. Sikes,et al.  Quantifying intracellular hydrogen peroxide perturbations in terms of concentration , 2014, Redox biology.

[41]  T. Finkel,et al.  Cellular mechanisms and physiological consequences of redox-dependent signalling , 2014, Nature Reviews Molecular Cell Biology.

[42]  O. Griesbeck,et al.  Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo , 2014, Nature Medicine.

[43]  A. A. Lanin,et al.  Pulse-width-tunable 0.7 W mode-locked Cr: forsterite laser. , 2014, Optics letters.

[44]  E. Amaya,et al.  Amputation-induced reactive oxygen species (ROS) are required for successful Xenopus tadpole tail regeneration , 2013, Nature Cell Biology.

[45]  S. Lukyanov,et al.  HyPer-3: a genetically encoded H(2)O(2) probe with improved performance for ratiometric and fluorescence lifetime imaging. , 2013, ACS chemical biology.

[46]  U. Jakob,et al.  Quantitative in vivo redox sensors uncover oxidative stress as an early event in life. , 2012, Molecular cell.

[47]  Judit Zsuga,et al.  The Hill equation and the origin of quantitative pharmacology , 2012 .

[48]  W. D. De Vos,et al.  Exploring real-time in vivo redox biology of developing and aging Caenorhabditis elegans. , 2012, Free radical biology & medicine.

[49]  M. Drobizhev,et al.  Two-photon absorption properties of fluorescent proteins , 2011, Nature Methods.

[50]  A. Sagasti,et al.  Hydrogen Peroxide Promotes Injury-Induced Peripheral Sensory Axon Regeneration in the Zebrafish Skin , 2011, PLoS biology.

[51]  J. C. Lodder,et al.  Label-free live brain imaging and targeted patching with third-harmonic generation microscopy , 2011, Proceedings of the National Academy of Sciences.

[52]  V. Gladyshev,et al.  Hydrogen Peroxide Probes Directed to Different Cellular Compartments , 2011, PloS one.

[53]  N. Nishimura,et al.  Deep tissue multiphoton microscopy using longer wavelength excitation. , 2009, Optics express.

[54]  Timothy J. Mitchison,et al.  A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish , 2009, Nature.

[55]  S. Lukyanov,et al.  Genetically encoded fluorescent indicator for intracellular hydrogen peroxide , 2006, Nature Methods.

[56]  Winfried Denk,et al.  On the fundamental imaging-depth limit in two-photon microscopy , 2004, SPIE Photonics Europe.

[57]  D. Kleinfeld,et al.  All-Optical Histology Using Ultrashort Laser Pulses , 2003, Neuron.

[58]  W. Denk,et al.  Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. , 2003, Optics letters.

[59]  R. Burdon Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. , 1995, Free radical biology & medicine.

[60]  L. Pollegioni,et al.  Kinetic mechanism of D-amino acid oxidases from Rhodotorula gracilis and Trigonopsis variabilis. , 1993, The Journal of biological chemistry.

[61]  Sergio Grinstein,et al.  Sensors and regulators of intracellular pH , 2010, Nature Reviews Molecular Cell Biology.