MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR‐class regulatory protein, has dual ligands

MvfR (PqsR), a Pseudomonas aeruginosa LysR‐type transcriptional regulator, plays a critical role in the virulence of this pathogen. MvfR modulates the expression of multiple quorum sensing (QS)‐regulated virulence factors; and the expression of the phnAB and pqsA‐E genes that encode functions mediating 4‐hydroxy‐2‐alkylquinolines (HAQs) signalling compounds biosynthesis, including 3,4‐dihydroxy‐2‐heptylquinoline (PQS) and its precursor 4‐hydroxy‐2‐heptylquinoline (HHQ). PQS enhances the in vitro DNA‐binding affinity of MvfR to the pqsA‐E promoter, to suggest it might function as the in vivo MvfR ligand. Here we identify a novel MvfR ligand, as we show that HHQ binds to the MvfR ligand‐binding‐domain and potentiates MvfR binding to the pqsA‐E promoter leading to transcriptional activation of pqsA‐E genes. We show that HHQ is highly produced in vivo, where it is not fully converted into PQS, and demonstrate that it is required for MvfR‐dependent gene expression and pathogenicity; PQS is fully dispensable, as pqsH– mutant cells, which produce HHQ but completely lack PQS, display normal MvfR‐dependent gene expression and virulence. Conversely, PQS is required for full production of pyocyanin. These results uncover a novel biological role for HHQ; and provide novel insights on MvfR activation that may aid in the development of therapies that prevent or treat P. aeruginosa infections in humans.

[1]  D. Newman,et al.  The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa , 2006, Molecular microbiology.

[2]  Susanne Häussler,et al.  The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. , 2006, Environmental microbiology.

[3]  S. Diggle,et al.  Functional genetic analysis reveals a 2-Alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. , 2006, Chemistry & biology.

[4]  L. Rahme,et al.  Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. , 2006, Microbiology.

[5]  S. Diggle,et al.  4-quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. , 2006, International journal of medical microbiology : IJMM.

[6]  H. Schweizer,et al.  A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. , 2006, Journal of microbiological methods.

[7]  M. Whiteley,et al.  Membrane vesicles traffic signals and facilitate group activities in a prokaryote , 2005, Nature.

[8]  E. Pesci,et al.  Regulation of Pseudomonas Quinolone Signal Synthesis in Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[9]  L. Eberl,et al.  Quorum sensing: the power of cooperation in the world of Pseudomonas. , 2005, Environmental microbiology.

[10]  Eric Déziel,et al.  The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing‐regulated genes are modulated without affecting lasRI, rhlRI or the production of N‐acyl‐ l‐homoserine lactones , 2004, Molecular microbiology.

[11]  L. Rahme,et al.  Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa , 2004, Journal of the American Society for Mass Spectrometry.

[12]  Daniel G. Lee,et al.  The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. Tompkins,et al.  Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Tompkins,et al.  The Drosophila melanogaster Toll Pathway Participates in Resistance to Infection by the Gram-Negative Human Pathogen Pseudomonas aeruginosa , 2003, Infection and Immunity.

[15]  L. Rahme,et al.  A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. , 2003, Biochimica et biophysica acta.

[16]  Roger S Smith,et al.  P. aeruginosa quorum-sensing systems and virulence. , 2003, Current opinion in microbiology.

[17]  Marina S. Kuznetsova,et al.  Functions Required for Extracellular Quinolone Signaling by Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[18]  Peter Gilligan,et al.  A bacterial cell to cell signal in the lungs of cystic fibrosis patients. , 2002, FEMS microbiology letters.

[19]  L. Rahme,et al.  A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  L. Gallagher,et al.  Pseudomonas aeruginosa PAO1 KillsCaenorhabditis elegans by Cyanide Poisoning , 2001, Journal of bacteriology.

[21]  K. M. Lee,et al.  QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  K. Rumbaugh,et al.  The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. , 2000, Microbes and infection.

[23]  E. Greenberg,et al.  Regulation of Quorum Sensing by RpoS inPseudomonas aeruginosa , 2000, Journal of bacteriology.

[24]  J. Lyczak,et al.  Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. , 2000, Microbes and infection.

[25]  F. Ausubel,et al.  Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Frederick M. Ausubel,et al.  Molecular Mechanisms of Bacterial Virulence Elucidated Using a Pseudomonas Aeruginosa– Caenorhabditis Elegans Pathogenesis Model , 2022 .

[27]  F. Ausubel,et al.  Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  G N Murshudov,et al.  The structure of the cofactor-binding fragment of the LysR family member, CysB: a familiar fold with a surprising subunit arrangement. , 1997, Structure.

[29]  F. Ausubel,et al.  Common virulence factors for bacterial pathogenicity in plants and animals. , 1995, Science.

[30]  C. Ryan,et al.  A quantitative model of invasive Pseudomonas infection in burn injury. , 1994, The Journal of burn care & rehabilitation.

[31]  T. Pitt,et al.  2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. , 1992, The Journal of antimicrobial chemotherapy.

[32]  S. Lory,et al.  Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili , 1990, Journal of bacteriology.

[33]  E. Greenberg,et al.  Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. , 2001, Annual review of genetics.

[34]  M. Schell Molecular biology of the LysR family of transcriptional regulators. , 1993, Annual review of microbiology.

[35]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.