Time–domain non-linear feature parameter for consonant classification

This paper introduces an accurate time–domain approach to model and classify the Malayalam consonant-Vowel (CV) speech unit waveforms. The technique is based on statistical models of Reconstructed State Space (RSS). A feature extraction method using RSS based State Space Point Distribution (SSPD) parameters are studied. The results of the simulation experiment performed on the Malayalam CV speech databases using Artificial Neural Network (ANN) and k-Nearest Neighborhood (k-NN) classifiers are also presented. The results indicate that the efficiency of the RSS approach is capable of increasing speaker independent consonant speech recognition accuracy.

[1]  P Prajith Investigations on the applications of dynamical instabilities and deterministic chaos for speech signal processing , 2008 .

[2]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[3]  A. N. Sharkovskiĭ Dynamic systems and turbulence , 1989 .

[4]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[5]  Gregory L. Baker,et al.  Chaotic dynamics: Contents , 1996 .

[6]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[7]  B. de Boer,et al.  Encyclopedia of Language and Linguistics (4) , 2006 .

[8]  R. Anitha,et al.  Outerproduct of trajectory matrix for acoustic modeling using support vector machines , 2004, Proceedings of the 2004 14th IEEE Signal Processing Society Workshop Machine Learning for Signal Processing, 2004..

[9]  Gregory L. Baker,et al.  Chaotic Dynamics: An Introduction , 1990 .

[10]  V. Kabeer,et al.  Face Recognition Using Nonlinear Feature Parameter and Artificial Neural Network , 2010, Int. J. Comput. Intell. Syst..

[11]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[12]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[13]  Abraham Kandel,et al.  Introduction to Pattern Recognition: Statistical, Structural, Neural and Fuzzy Logic Approaches , 1999 .

[14]  Richard J. Povinelli,et al.  Time-domain isolated phoneme classification using reconstructed phase spaces , 2005, IEEE Transactions on Speech and Audio Processing.

[15]  R. Casey,et al.  Advances in Pattern Recognition , 1971 .

[16]  Hemant A. Patil,et al.  LP spectra vs. Mel spectra for identification of professional mimics in Indian languages , 2008, Int. J. Speech Technol..

[17]  Walt Detmar Meurers,et al.  Encyclopedia of Language and Linguistics , 2006 .

[18]  Min-Chun Yu,et al.  Multi-criteria ABC analysis using artificial-intelligence-based classification techniques , 2011, Expert Syst. Appl..

[19]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[20]  David G. Stork,et al.  Pattern Classification , 1973 .

[21]  M. Casdagli Chaos and Deterministic Versus Stochastic Non‐Linear Modelling , 1992 .

[22]  Hamid Sheikhzadeh,et al.  Waveform-based speech recognition using hidden filter models: parameter selection and sensitivity to power normalization , 1994, IEEE Trans. Speech Audio Process..

[23]  B. Chatterjee,et al.  Design of a Nearest Neighbour Classifier System for Bengali Character Recognition , 1984 .

[24]  O. Casha,et al.  Neural network architectures for speaker independent phoneme recognition , 2011, 2011 7th International Symposium on Image and Signal Processing and Analysis (ISPA).

[25]  P. Ladefoged Vowels and consonants : an introduction to the sounds of languages , 2001 .

[26]  David J. Hand,et al.  Discrimination and Classification , 1982 .

[27]  Steve McLaughlin,et al.  IEE Colloquium on "Exploiting Chaos in Signal Processing, Digest No 1994/193 , 1994 .

[28]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[29]  Ara Samouelian,et al.  Knowledge based approach to consonant recognition , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[30]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[31]  Howell Tong,et al.  Non-linear time series analysis , 2005 .

[32]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[33]  Oh-Wook Kwon,et al.  Speech feature analysis using variational Bayesian PCA , 2003, IEEE Signal Process. Lett..

[34]  Venu Govindaraju,et al.  Guide to OCR for Indic Scripts: Document Recognition and Retrieval , 2009 .

[35]  Y. Wong,et al.  Differentiable Manifolds , 2009 .

[36]  S. Dandapat,et al.  Speaker recognition under stressed condition , 2010, Int. J. Speech Technol..

[37]  James H. Martin,et al.  Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition , 2000 .

[38]  Patrick K. Simpson,et al.  Artificial Neural Systems: Foundations, Paradigms, Applications, and Implementations , 1990 .

[39]  Sargur N. Srihari,et al.  Fast k-nearest neighbor classification using cluster-based trees , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[41]  Franz Pernkopf,et al.  Bayesian network classifiers versus selective k-NN classifier , 2005, Pattern Recognit..

[42]  Lajish Adaptive neuro fuzzy inference based pattern recognition studies on handwritten character images , 2007 .

[43]  Sankar K. Pal,et al.  Multilayer perceptron, fuzzy sets, and classification , 1992, IEEE Trans. Neural Networks.

[44]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[45]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[46]  H. M. Teager,et al.  Evidence for Nonlinear Sound Production Mechanisms in the Vocal Tract , 1990 .

[47]  Teuvo Kohonen,et al.  An introduction to neural computing , 1988, Neural Networks.

[48]  F. Takens Detecting strange attractors in turbulence , 1981 .