Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications☆

[1]  D. Shaw,et al.  Validating Excised Rodent Lungs for Functional Hyperpolarized Xenon-129 MRI , 2013, PloS one.

[2]  L. Mitschang,et al.  Configuration and Performance of a Mobile 129Xe Polarizer , 2012, Applied Magnetic Resonance.

[3]  K. Stupic,et al.  Pathway to Cryogen Free Production of Hyperpolarized Krypton-83 and Xenon-129 , 2012, PloS one.

[4]  J. Repine,et al.  Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation , 2011, Physics in medicine and biology.

[5]  M. Barlow,et al.  {sup 129}Xe-Cs (D{sub 1},D{sub 2}) versus {sup 129}Xe-Rb (D{sub 1}) spin-exchange optical pumping at high xenon densities using high-power laser diode arrays , 2011 .

[6]  M. Barlow,et al.  Interdependence of in-cell xenon density and temperature during Rb/129Xe spin-exchange optical pumping using VHG-narrowed laser diode arrays. , 2011, Journal of magnetic resonance.

[7]  B. Saam,et al.  Characterization of a low-pressure high-capacity X 129 e flow-through polarizer , 2009 .

[8]  M. Barlow,et al.  Generation of laser-polarized xenon using fiber-coupled laser-diode arrays narrowed with integrated volume holographic gratings. , 2009, Journal of magnetic resonance.

[9]  Y. Hori,et al.  3D Hyperpolarized (129)Xe MRI of mouse lung at low xenon concentration using a continuous flow-type hyperpolarizing system: feasibility for quantitative measurement of regional ventilation. , 2009, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[10]  Z. Cleveland,et al.  Binary-collision-induced longitudinal relaxation in gas-phase 83Kr. , 2008, The Journal of chemical physics.

[11]  J. Repine,et al.  Hyperpolarized 83Kr MRI of lungs. , 2008, Journal of magnetic resonance.

[12]  A. Kimura,et al.  Effect of reduced pressure on the polarization of 129Xe in the production of hyperpolarized 129Xe gas: Development of a simple continuous flow mode hyperpolarizing system working at pressures as low as 0.15 atm , 2008 .

[13]  Z. Cleveland,et al.  Density-independent contributions to longitudinal relaxation in 83Kr. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  S. Patz,et al.  Large production system for hyperpolarized 129Xe for human lung imaging studies. , 2008, Academic radiology.

[15]  Hiroto Hatabu,et al.  Hyperpolarized (129)Xe MRI: a viable functional lung imaging modality? , 2007, European journal of radiology.

[16]  I. Ruset,et al.  Optical pumping system design for large production of hyperpolarized. , 2006, Physical review letters.

[17]  K. Stupic,et al.  Exploring hyperpolarized Kr83 by remotely detected NMR relaxometry , 2006 .

[18]  K. Stupic,et al.  Exploring hyperpolarized 83Kr by remotely detected NMR relaxometry. , 2006, The Journal of chemical physics.

[19]  R. Basaraba,et al.  Hyperpolarized krypton-83 as a contrast agent for magnetic resonance imaging. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. Mortuza,et al.  Spin-exchange optical pumping of high-density xenon-129 , 2003 .

[21]  Bhavin B. Adhyaru,et al.  High capacity production of >65% spin polarized xenon-129 for NMR spectroscopy and imaging. , 2002, Journal of magnetic resonance.

[22]  W. Happer,et al.  Fast nuclear spin relaxation in hyperpolarized solid 129Xe. , 2002, Physical review letters.

[23]  N. Shah,et al.  Measurement of rubidium and xenon absolute polarization at high temperatures as a means of improved production of hyperpolarized 129Xe , 2000, NMR in biomedicine.

[24]  J. Brookeman,et al.  NMR of hyperpolarized 129Xe in the canine chest: spectral dynamics during a breath‐hold , 2000, NMR in biomedicine.

[25]  T. Chupp,et al.  Polarization of 129Xe with high power external-cavity laser diode arrays , 2000 .

[26]  M. Schnall,et al.  Demonstration of a compact compressor for application of metastability‐exchange optical pumping of 3He to human lung imaging , 2000, Magnetic resonance in medicine.

[27]  T. Chupp,et al.  Polarization of 129 Xe with high power external-cavity laser diode arrays , 2000 .

[28]  R. Welsh,et al.  Polarized 129Xe optical pumping/spin exchange and delivery system for magnetic resonance spectroscopy and imaging studies , 1999 .

[29]  T. Walker,et al.  Spin-exchange optical pumping of noble-gas nuclei , 1997 .

[30]  P T Fox,et al.  Magnetization and diffusion effects in NMR imaging of hyperpolarized substances , 1997, Magnetic resonance in medicine.

[31]  F. Jolesz,et al.  Gradient-Echo Imaging Considerations for Hyperpolarized 129Xe MR , 1996, Journal of magnetic resonance. Series B.

[32]  Bastiaan Driehuys,et al.  High‐volume production of laser‐polarized 129Xe , 1996 .

[33]  Ferenc A. Jolesz,et al.  COMMUNICATIONS Gradient-Echo Imaging Considerations for Hyperpolarized 129 Xe MR , 1996 .

[34]  Middleton,et al.  Nuclear relaxation of 3He in the presence of O2. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[35]  E. Otten,et al.  Study of mechanical compression of spin-polarized 3He gas , 1994 .

[36]  Long,et al.  High-field NMR of adsorbed xenon polarized by laser pumping. , 1991, Physical review letters.

[37]  A. Jameson,et al.  Nuclear spin relaxation by intermolecular magnetic dipole coupling in the gas phase. 129Xe in oxygen , 1988 .

[38]  R. Norberg,et al.  Pulsed NMR studies of self-diffusion and defect structure in liquid and solid krypton , 1976 .

[39]  R. Norberg,et al.  Spin-Lattice Relaxation and Chemical Shift of Kr 83 in Solid and Liquid Krypton , 1973 .

[40]  R. Timsit,et al.  An Experiment to Compress Polarized 3He Gas , 1971 .

[41]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .