Classifying the chemical bonds involving the noble-gas atoms

We propose here a general classification of the Ng–X bonds (Ng = noble-gas atom; X = binding partner) that relies on the combined analysis of the local electron energy density H(r), and the reduced density gradient (RDG). Based on the plotted shape of H(r), the Ng–X bonds are first distinguished into types A, B, or C. Based on the topology of H(r), and its integration over the RDG isosurface associated with the bond, any Ng–X bond is then assigned as covalent (Cov), non-covalent (nCov), or partially-covalent (pCov), and any pCov bond is further assayed in terms of the contribution of covalency (H+/−, H−/+, or H−). The method was developed by examining 47 reference species (indicated here as the NgBC47 reference set) of quite diverse bonding character. The obtained classification is, seemingly, robust with respect to the computational level, and of general applicability, as suggested also by test calculations involving some helium, neon, and argon compounds of peculiar bonding character.

[1]  A. Frontera,et al.  σ/π-Hole noble gas bonding interactions: Insights from theory and experiment , 2020 .

[2]  Paola Antoniotti,et al.  Complexes of helium with neutral molecules: Progress toward a quantitative scale of bonding character , 2020, J. Comput. Chem..

[3]  P. Hiberty,et al.  Charge-Shift Bonding: A New and Unique Form of Bonding. , 2019, Angewandte Chemie.

[4]  Jin-Feng Li,et al.  Exploring the structure, bonding and stability of noble gas compounds promoted by superhalogens. A case study on HNgMX3 (Ng = Ar-Rn, M = Be-Ca, X = F-Br) via combined high-level ab initio and DFT calculations. , 2019, Physical chemistry chemical physics : PCCP.

[5]  Ranajit Saha,et al.  How Far Can One Push the Noble Gases Towards Bonding?: A Personal Account , 2019, Molecules.

[6]  Paola Antoniotti,et al.  Noncovalent Complexes of the Noble‐Gas Atoms: Analyzing the Transition from Physical to Chemical Interactions , 2019, J. Comput. Chem..

[7]  P. Chattaraj,et al.  Noble‐Noble Strong Union: Gold at Its Best to Make a Bond with a Noble Gas Atom , 2019, ChemistryOpen.

[8]  F. Grandinetti Noble Gas Chemistry , 2018 .

[9]  M. Duncan,et al.  An Argon-Oxygen Covalent Bond in the ArOH+ Molecular Ion. , 2018, Angewandte Chemie.

[10]  M. Esrafili,et al.  A computational study on the strength and nature of bifurcated aerogen bonds , 2018 .

[11]  G. Frenking,et al.  Helium Accepts Back-Donation In Highly Polar Complexes: New Insights into the Weak Chemical Bond. , 2017, The journal of physical chemistry letters.

[12]  Ranajit Saha,et al.  Noble Gas Binding Ability of Metal‐Bipyridine Monocationic Complexes (Metal=Cu, Ag, Au): A Computational Study , 2016 .

[13]  M. Esrafili,et al.  A theoretical evidence for cooperative enhancement in aerogen-bonding interactions: Open-chain clusters of KrOF2 and XeOF2 , 2016 .

[14]  M. Esrafili,et al.  Investigation of substituent effects in aerogen‐bonding interaction between ZO3 (Z=Kr, Xe) and nitrogen bases , 2016 .

[15]  Ranajit Saha,et al.  A noble interaction: An assessment of noble gas binding ability of metal oxides (metal = Cu, Ag, Au) , 2016 .

[16]  P. Hobza,et al.  Introduction: Noncovalent Interactions. , 2016, Chemical reviews.

[17]  Ranajit Saha,et al.  σ-Aromatic cyclic M3(+) (M = Cu, Ag, Au) clusters and their complexation with dimethyl imidazol-2-ylidene, pyridine, isoxazole, furan, noble gases and carbon monoxide. , 2016, Physical chemistry chemical physics : PCCP.

[18]  Wenli Zou,et al.  Correction to "On the Covalent Character of Rare Gas Bonding Interactions: A New Kind of Weak Interaction". , 2016, The journal of physical chemistry. A.

[19]  Sreyan Ghosh,et al.  Structure and stability of noble gas bound EX3+ compounds (E = C, Ge, Sn, Pb; X = H, F, Cl, Br) , 2016, J. Comput. Chem..

[20]  A. Frontera,et al.  Theoretical Study on the Dual Behavior of XeO3 and XeF4 toward Aromatic Rings: Lone Pair-π versus Aerogen-π Interactions. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  T. Ghanty,et al.  Noble Gas Inserted Protonated Silicon Monoxide Cations: HNgOSi(+) (Ng = He, Ne, Ar, Kr, and Xe). , 2015, The journal of physical chemistry. A.

[22]  Ashutosh Gupta,et al.  A coupled‐cluster study on the noble gas binding ability of metal cyanides versus metal halides (metal = Cu, Ag, Au) , 2015, J. Comput. Chem..

[23]  A. Frontera,et al.  π-Hole aerogen bonding interactions. , 2015, Physical chemistry chemical physics : PCCP.

[24]  Ranajit Saha,et al.  On the stability of noble gas bound 1-tris(pyrazolyl)borate beryllium and magnesium complexes , 2015 .

[25]  A. Frontera,et al.  Aerogen Bonding Interaction: A New Supramolecular Force? , 2015, Angewandte Chemie.

[26]  Ranajit Saha,et al.  Comparative Study on the Noble-Gas Binding Ability of BeX Clusters (X = SO4, CO3, O). , 2015, The journal of physical chemistry. A.

[27]  S. Borocci,et al.  Complexes of the Noble Gases with H3O+: A Theoretical Investigation of Ng(H3O+) (Ng = He—Xe) , 2015, European journal of mass spectrometry.

[28]  S. Borocci,et al.  Bonding Motifs of Noble-Gas Compounds As Described by the Local Electron Energy Density. , 2015, The journal of physical chemistry. A.

[29]  Li Sheng,et al.  Theoretical investigation of HNgNH3(+) ions (Ng = He, Ne, Ar, Kr, and Xe). , 2015, The Journal of chemical physics.

[30]  Gernot Frenking,et al.  Experimental and theoretical studies of the infrared spectra and bonding properties of NgBeCO₃ and a comparison with NgBeO (Ng = He, Ne, Ar, Kr, Xe). , 2015, The journal of physical chemistry. A.

[31]  Debashree Manna,et al.  Theoretical prediction of noble gas inserted thioformyl cations: HNgCS⁺ (Ng = He, Ne, Ar, Kr, and Xe). , 2015, The journal of physical chemistry. A.

[32]  Pratim K. Chattaraj,et al.  Exploring the Nature of Silicon-Noble Gas Bonds in H3SiNgNSi and HSiNgNSi Compounds (Ng = Xe, Rn) , 2015, International journal of molecular sciences.

[33]  P. Bernath,et al.  Relationship between dipole moments and harmonic vibrational frequencies in diatomic molecules. , 2015, The journal of physical chemistry. A.

[34]  C. Gatti,et al.  Energetics of non-covalent interactions from electron and energy density distributions , 2015 .

[35]  L. Gracia,et al.  Chemical structure and reactivity by means of quantum chemical topology analysis , 2015 .

[36]  Pratim K Chattaraj,et al.  Metastable behavior of noble gas inserted tin and lead fluorides. , 2015, Physical chemistry chemical physics : PCCP.

[37]  G. Schrobilgen,et al.  The chemistry of xenon(IV). , 2015, Chemical reviews.

[38]  Paul Geerlings,et al.  Understanding the fundamental role of π/π, σ/σ, and σ/π dispersion interactions in shaping carbon-based materials. , 2014, Chemistry.

[39]  M. Ilczyszyn,et al.  Nature of Brønsted acid–noble atom contacts: A reevaluation of hydrogen bonding criteria , 2014 .

[40]  Pratim K Chattaraj,et al.  In quest of strong Be-Ng bonds among the neutral Ng-Be complexes. , 2014, The journal of physical chemistry. A.

[41]  Tapan K. Ghanty,et al.  Theoretical prediction of rare gas containing hydride cations: HRgBF+ (Rg = He, Ar, Kr, and Xe). , 2013, The journal of physical chemistry. A.

[42]  Richard Dronskowski,et al.  A stable compound of helium and sodium at high pressure. , 2013, Nature chemistry.

[43]  T. Ghanty,et al.  Theoretical prediction of rare gas inserted hydronium ions: HRgOH2(+). , 2013, The Journal of chemical physics.

[44]  M. Ilczyszyn,et al.  Hydrogen bonding to xenon: A comparison with neon, argon and krypton complexes , 2013 .

[45]  J. E. Boggs,et al.  On the covalent character of rare gas bonding interactions: a new kind of weak interaction. , 2013, The journal of physical chemistry. A.

[46]  Wojciech Grochala,et al.  A metastable He-O bond inside a ferroelectric molecular cavity: (HeO)(LiF)2. , 2012, Physical chemistry chemical physics : PCCP.

[47]  Takanori Kobayashi,et al.  Rare gas bond property of Rg–Be2O2 and Rg–Be2O2–Rg (Rg = He, Ne, Ar, Kr and Xe) as a comparison with Rg–BeO , 2012 .

[48]  T. Ghanty,et al.  Theoretical investigation of rare gas hydride cations: HRgN2+ (Rg=He, Ar, Kr, and Xe). , 2012, The Journal of chemical physics.

[49]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[50]  Julia Contreras-García,et al.  Analysis of hydrogen-bond interaction potentials from the electron density: integration of noncovalent interaction regions. , 2011, The journal of physical chemistry. A.

[51]  F. Grandinetti Gas-Phase Ion Chemistry of the Noble Gases: Recent Advances and Future Perspectives , 2011, European journal of mass spectrometry.

[52]  Wei-Ping Hu,et al.  Benchmark of density functional theory methods on the prediction of bond energies and bond distances of noble-gas containing molecules. , 2011, The Journal of chemical physics.

[53]  F. Turco,et al.  Positive Ion Chemistry of SiH4/GeF4 Gaseous Mixtures Studied by Ion Trap Mass Spectrometry and Ab Initio Calculations , 2011, European journal of mass spectrometry.

[54]  S. Borocci,et al.  Cationic noble gas hydrides-2: A theoretical investigation on HNgHNgH+ (Ng = Ar, Kr, Xe) , 2011 .

[55]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[56]  Adrian M. Gardner,et al.  Geometries and bond energies of the He-MX, Ne-MX, and Ar-MX (M = Cu, Ag, Au; X = F, Cl) complexes. , 2010, The journal of physical chemistry. A.

[57]  Guoqun Liu,et al.  Theoretical study on the CH3NgF species , 2010 .

[58]  P. Chattaraj,et al.  Trapping of noble gases (He–Kr) by the aromatic H3+ and Li3+ species: a conceptual DFT approach , 2009, 0911.5381.

[59]  P. Taylor,et al.  A diagnostic for determining the quality of single‐reference electron correlation methods , 2009 .

[60]  S. Borocci,et al.  Noble gas–selenium molecular species: A theoretical investigation of FNgSe− (Ng = He–Xe) , 2009 .

[61]  T. Ghanty,et al.  Theoretical prediction of HRgCO(+) ion (Rg=He, Ne, Ar, Kr, and Xe). , 2008, The Journal of chemical physics.

[62]  S. Borocci,et al.  Noble gas anions: a theoretical investigation of FNgBN- (Ng = He-Xe). , 2007, The journal of physical chemistry. A.

[63]  W. Grochala Atypical compounds of gases, which have been called 'noble'. , 2007, Chemical Society reviews.

[64]  K. Peterson,et al.  Basis set limit electronic excitation energies, ionization potentials, and electron affinities for the 3d transition metal atoms: Coupled cluster and multireference methods. , 2006, The Journal of chemical physics.

[65]  M. Gerry,et al.  XeCu covalent bonding in XeCuF and XeCuCl, characterized by fourier transform microwave spectroscopy supported by quantum chemical calculations. , 2006, Journal of the American Chemical Society.

[66]  Kirk A Peterson,et al.  Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2005, The Journal of chemical physics.

[67]  Wei-Ping Hu,et al.  Theoretical prediction of noble gas containing anions FNgO- (Ng = He, Ar, and Kr). , 2005, Journal of the American Chemical Society.

[68]  S. Borocci,et al.  OBHe+: a remarkably stable singly charged cation containing helium , 2004 .

[69]  Felice Grandinetti,et al.  Helium Chemistry: A Survey of the Role of the Ionic Species , 2004 .

[70]  M. Gerry,et al.  Rotational spectra, structures, hyperfine constants, and the nature of the bonding of KrCuF and KrCuCl. , 2004, Inorganic chemistry.

[71]  H. Stoll,et al.  Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements , 2003 .

[72]  Z. Latajka,et al.  Ab initio characterization of the xenon dihydride dimer – (HXeH)2 , 2003 .

[73]  J. Lehmann The chemistry of krypton , 2002 .

[74]  Z. Latajka,et al.  DFT calculations of HRgX (Rg = rare gas; X = halogen) molecules , 2002 .

[75]  Jan Lundell,et al.  Quantum chemical calculations on FXeSiF , 2001 .

[76]  B. Silvi,et al.  Electron localization function studies of the nature of binding in neutral rare-gas containing hydrides: HKrCN, HKrNC, HXeCN, HXeNC, HXeOH, and HXeSH , 2001 .

[77]  Z. Latajka,et al.  A density functional study of the xenon dihydride–water complex , 2000 .

[78]  Jan Lundell,et al.  A stable argon compound , 2000, Nature.

[79]  M. W. Wong Prediction of a Metastable Helium Compound: HHeF , 2000 .

[80]  Michael C. L. Gerry,et al.  Noble gas–metal chemical bonding? The microwave spectra, structures, and hyperfine constants of Ar–CuX(X=F, Cl, Br) , 2000 .

[81]  Z. Latajka,et al.  Density functional study of the Xe2H3+ cation , 1999 .

[82]  Hajigeorgiou,et al.  Experimental Born-Oppenheimer Potential for the X1Sigma+ Ground State of HeH+: Comparison with the Ab Initio Potential. , 1999, Journal of molecular spectroscopy.

[83]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[84]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[85]  R. A. Aziz,et al.  A highly accurate interatomic potential for argon , 1993 .

[86]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[87]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton , 1993 .

[88]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[89]  Wolfram Koch,et al.  Light noble gas chemistry: structures, stabilities, and bonding of helium, neon, and argon compounds , 1990 .

[90]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[91]  J. Gauss,et al.  Neon and argon bonding in first-row cations NeX+ and ArX+ (X = Li-Ne) , 1989 .

[92]  J. Gauss,et al.  Helium bonding in singly and doubly charged first-row diatomic cations HeXn+ (X = Li-Ne; n = 1,2) , 1989 .

[93]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[94]  R. A. Aziz,et al.  The neon–argon potential revisited , 1988 .

[95]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[96]  D. Cremer,et al.  Helium chemistry: theoretical predictions and experimental challenge , 1987 .

[97]  P. Bernath,et al.  The infrared spectrum of XeH , 1987 .

[98]  Elfi Kraka,et al.  Chemical Bonds without Bonding Electron Density — Does the Difference Electron‐Density Analysis Suffice for a Description of the Chemical Bond? , 1984 .

[99]  R. A. Aziz,et al.  An improved potential for Ar–Kr , 1983 .

[100]  R. A. Aziz,et al.  Comparison of the predictions of literature intermolecular potentials for Ar–Xe and Kr–Xe with experiment: Two new potentials , 1983 .

[101]  John A. Pople,et al.  Self‐consistent molecular orbital methods. XVIII. Constraints and stability in Hartree–Fock theory , 1977 .

[102]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[103]  C. Gatti Chemical bonding in crystals: new directions , 2005 .

[104]  Z. Latajka,et al.  Dihydrogen-bonded complexes of xenon dihydride with water: Ab initio calculations and topological analysis of electron localisation function (ELF) , 2000 .

[105]  David,et al.  Gaussian basis sets for use in correlated molecular calculations . Ill . The atoms aluminum through argon , 1999 .

[106]  M. Keil,et al.  On obtaining interatomic potentials from multiproperty fits to experimental data , 1991 .

[107]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[108]  Elfi Kraka,et al.  A Description of the Chemical Bond in Terms of Local Properties of Electron Density and Energy , 1984 .