Numerical linear algebra aspects of globally convergent homotopy methods

Probability one homotopy algorithms are a class of methods for solving nonlinear systems of equations that are globally convergent with probability one. These methods are theoretically powerful, and if constructed and implemented properly, are robust, numerically stable, accurate, and practical. The concomitant numerical linear algebra problems deal with rectangular matrices, and good algorithms require a delicate balance (not always achieved) of accuracy, robustness, and efficiency in both space and time. The author's experience with globally convergent homotopy algorithms is surveyed here, and some of the linear algebra difficulties for dense and sparse problems are discussed.

[1]  R. W. Klopfenstein,et al.  Zeros of Nonlinear Functions , 1961, JACM.

[2]  Herbert E. Scarf,et al.  The Approximation of Fixed Points of a Continuous Mapping , 1967 .

[3]  P. Boggs The Solution of Nonlinear Operator Equations by A-stable Integration Techniques , 1970 .

[4]  G. Wempner Discrete approximations related to nonlinear theories of solids , 1971 .

[5]  B. Curtis Eaves,et al.  Homotopies for computation of fixed points on unbounded regions , 1972, Math. Program..

[6]  B. Curtis Eaves,et al.  Homotopies for computation of fixed points , 1972, Math. Program..

[7]  Melvin R. Scott,et al.  Invariant imbedding and its applications to ordinary differential equations: An introduction , 1974 .

[8]  Philip E. Gill,et al.  Newton-type methods for unconstrained and linearly constrained optimization , 1974, Math. Program..

[9]  L. Shampine,et al.  Computer solution of ordinary differential equations : the initial value problem , 1975 .

[10]  H. Keller Numerical Solution of Two Point Boundary Value Problems , 1976 .

[11]  S. Smale Convergent process of price adjust-ment and global newton methods , 1976 .

[12]  R. Saigal,et al.  On the Convergence Rate of Algorithms for Solving Equations that are Based on Methods of Complementary Pivoting , 1977, Math. Oper. Res..

[13]  J. Yorke,et al.  The homotopy continuation method: numerically implementable topological procedures , 1978 .

[14]  J. Yorke,et al.  Finding zeroes of maps: homotopy methods that are constructive with probability one , 1978 .

[15]  M. Todd,et al.  Efficient Acceleration Techniques for Fixed Point Algorithms , 1978 .

[16]  J. Yorke,et al.  A homotopy method for locating all zeros of a system of polynomials , 1979 .

[17]  L. Watson,et al.  Squeezing of a viscous fluid between elliptic plates , 1979 .

[18]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[19]  E. Allgower,et al.  Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations , 1980 .

[20]  L. Watson,et al.  Optimal design by a homotopy method , 1980 .

[21]  Chang Y. Wang,et al.  A homotopy method applied to elastica problems , 1981 .

[22]  W. Rheinboldt,et al.  On steplength algorithms for a class of continuation methods siam j numer anal , 1981 .

[23]  Joseph Padovan,et al.  Self-adaptive predictor-corrector algorithms for static nonlinear structural analysis , 1982 .

[24]  W. Rheinboldt Computation of Critical Boundaries on Equilibrium Manifolds , 1982 .

[25]  J. Yorke,et al.  Piecewise Smooth Homotopies , 1983 .

[26]  Layne T. Watson,et al.  A quasi-Newton versus a homotopy method for nonlinear structural analysis , 1983 .

[27]  Werner C. Rheinboldt,et al.  Algorithm 596: a program for a locally parameterized , 1983, TOMS.

[28]  C. Y. Wang,et al.  Buckling, Postbuckling, and the Flow Through a Tethered Elastic Cylinder Under External Pressure , 1983 .

[29]  L. Watson,et al.  Tracking nonlinear equilibrium paths by a homotopy method , 1983 .

[30]  K. Georg A Note on Stepsize Control for Numerical Curve Following , 1983 .

[31]  R. Saigal An Efficient Procedure for Traversing Large Pieces in Fixed Point Algorithms , 1983 .

[32]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[33]  J. Junkins,et al.  Robust nonlinear least squares estimation using the Chow-Yorke homotopy method , 1984 .

[34]  Layne T. Watson,et al.  Deceleration of a porous rotating disk in a viscous fluid , 1985 .

[35]  Layne T. Watson,et al.  Location of stable and unstable equilibrium configurations using a model trust region quasi-Newton method and tunnelling , 1985 .

[36]  Layne T. Watson,et al.  Micropolar flow past a stretching sheet , 1985 .

[37]  L. Watson,et al.  HOMPACK: a suite of codes for globally convergent homotopy algorithms. Technical report No. 85-34 , 1985 .

[38]  A. Morgan A transformation to avoid solutions at infinity for polynomial systems , 1986 .

[39]  R. Mejia CONKUB: A conversational path-follower for systems of nonlinear equations , 1986 .

[40]  Layne T. Watson,et al.  Micropolar flow past a porous stretching sheet , 1986 .