Weak Consistency of Finite Volume Schemes for Systems of Non Linear Conservation Laws: Extension to Staggered Schemes

We prove in this paper the weak consistency of a general finite volume convection operator acting on discrete functions which are possibly not piecewise-constant over the cells of the mesh and over the time steps. It yields an extension of the Lax-Wendroff if-theorem for general colocated or non-colocated schemes. This result is obtained for general polygonal or polyhedral meshes, under assumptions which, for usual practical cases, essentially boil down to a flux-consistency constraint; this latter is, up to our knowledge, novel and compares the discrete flux at a face to the mean value over the adjacent cell of the continuous flux function applied to the discrete unknown function. We then apply this result to prove the consistency of a finite volume discretisation of a convection operator featuring a (convected) scalar variable and a (convecting) velocity field, with a staggered approximation, i.e. with a cell-centred approximation of the scalar variable and a face-centred approximation of the velocity. 2010 AMS Subject Classification. Primary 65M08, 76N15 ; Secondary 65M12, 76N19. The dates will be set by the publisher.