Research Progress in Function and Regulation of E3 Ubiquitin Ligase SMURF1

[1]  D. Kastner,et al.  Disorders of ubiquitylation: unchained inflammation , 2022, Nature Reviews Rheumatology.

[2]  M. Meyer,et al.  RhoA Signaling in Neurodegenerative Diseases , 2022, Cells.

[3]  S. Narayan,et al.  Therapeutics Targeting p53-MDM2 Interaction to Induce Cancer Cell Death , 2022, International journal of molecular sciences.

[4]  Liang Chen,et al.  Mitochondrion-Localized SND1 Promotes Mitophagy and Liver Cancer Progression Through PGAM5 , 2022, Frontiers in Oncology.

[5]  D. Langley,et al.  PROTAC targeted protein degraders: the past is prologue , 2022, Nature Reviews Drug Discovery.

[6]  H. Mott,et al.  Progress in the therapeutic inhibition of Cdc42 signalling , 2021, Biochemical Society transactions.

[7]  H. H. Park Structural feature of TRAFs, their related human diseases and therapeutic intervention , 2021, Archives of Pharmacal Research.

[8]  S. M. A. Najafi,et al.  Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy , 2020, Iranian biomedical journal.

[9]  Lingqiang Zhang,et al.  Smurf1 aggravates non‐alcoholic fatty liver disease by stabilizing SREBP‐1c in an E3 activity‐independent manner , 2020, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[10]  D. Calderwood,et al.  Chapter 22: Structural and signaling functions of integrins. , 2020, Biochimica et biophysica acta. Biomembranes.

[11]  O. Wiest,et al.  Molecular Analysis of Membrane Targeting by the C2 Domain of the E3 Ubiquitin Ligase Smurf1 , 2020, Biomolecules.

[12]  Wenwen Wu,et al.  SND1 facilitates the invasion and migration of cervical cancer cells by Smurf1-mediated degradation of FOXA2. , 2019, Experimental cell research.

[13]  Shannon M. Mumenthaler,et al.  A truncating mutation in the autophagy gene UVRAG drives inflammation and tumorigenesis in mice , 2019, Nature Communications.

[14]  G. Melino,et al.  HECT-Type E3 Ubiquitin Ligases in Cancer. , 2019, Trends in biochemical sciences.

[15]  K. Yeung,et al.  Reduced RhoA expression enhances breast cancer metastasis with a concomitant increase in CCR5 and CXCR4 chemokines signaling , 2019, Scientific Reports.

[16]  R. Pedeux,et al.  Exploiting ING2 Epigenetic Modulation as a Therapeutic Opportunity for Non-Small Cell Lung Cancer , 2019, Cancers.

[17]  H. Hou,et al.  The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors , 2019, Cancer Cell International.

[18]  Dongbin Li,et al.  MicroRNA‐125a inhibits tumorigenesis by targeting Smurf1 in colorectal carcinoma , 2019, FEBS open bio.

[19]  Tabughang Franklin Chi,et al.  Cyclin-Dependent Kinase 5 (CDK5)-Mediated Phosphorylation of Upstream Stimulatory Factor 2 (USF2) Contributes to Carcinogenesis , 2019, Cancers.

[20]  T. Komori Regulation of Proliferation, Differentiation and Functions of Osteoblasts by Runx2 , 2019, International journal of molecular sciences.

[21]  Yi Zhao,et al.  Opposing roles and potential antagonistic mechanism between TGF-β and BMP pathways: Implications for cancer progression , 2019, EBioMedicine.

[22]  Shan Xu,et al.  Upregulation of microRNA-194-5p inhibits hypopharyngeal carcinoma cell proliferation, migration and invasion by targeting SMURF1 via the mTOR signaling pathway , 2019, International journal of oncology.

[23]  J. D. Etlinger,et al.  Role of SMURF1 ubiquitin ligase in BMP receptor trafficking and signaling. , 2019, Cellular signalling.

[24]  Zhiyong Zhang,et al.  Ubiquitination of UVRAG by SMURF1 promotes autophagosome maturation and inhibits hepatocellular carcinoma growth , 2019, Autophagy.

[25]  G. Kroemer,et al.  Biological Functions of Autophagy Genes: A Disease Perspective , 2019, Cell.

[26]  H. Fan,et al.  miR-1254 inhibits cell proliferation, migration, and invasion by down-regulating Smurf1 in gastric cancer , 2019, Cell Death & Disease.

[27]  Yan Zhang,et al.  Hippo kinase NDR2 inhibits IL‐17 signaling by promoting Smurf1‐mediated MEKK2 ubiquitination and degradation , 2019, Molecular immunology.

[28]  G. Bridge Exploiting , 2018, companion encyclopedia of geography.

[29]  Xiaohong Li,et al.  TGF-β receptors: In and beyond TGF-β signaling. , 2018, Cellular signalling.

[30]  C. Werner,et al.  E3 Ubiquitin-Protein Ligase SMURF1 in the Nucleus Accumbens Mediates Cocaine Seeking , 2018, Biological Psychiatry.

[31]  Fangfang Hu,et al.  SMAD specific E3 ubiquitin protein ligase 1 promotes ovarian cancer cell migration and invasion via the activation of the RhoA/ROCK signaling pathway. , 2018, Oncology reports.

[32]  Lingqiang Zhang,et al.  VCP/p97 increases BMP signaling by accelerating ubiquitin ligase Smurf1 degradation , 2018, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[33]  R. Gopalakrishnan,et al.  SMAD1/5 signaling in osteoclasts regulates bone formation via coupling factors , 2018, PloS one.

[34]  Z. Bian,et al.  SRSF5 functions as a novel oncogenic splicing factor and is upregulated by oncogene SRSF3 in oral squamous cell carcinoma. , 2018, Biochimica et biophysica acta. Molecular cell research.

[35]  Xiaojuan He,et al.  Inhibition of osteoblastic Smurf1 promotes bone formation in mouse models of distinctive age-related osteoporosis , 2018, Nature Communications.

[36]  M. Blank,et al.  Smurfs in Protein Homeostasis, Signaling, and Cancer , 2018, Front. Oncol..

[37]  M. Mansour Ubiquitination: Friend and foe in cancer. , 2018, The international journal of biochemistry & cell biology.

[38]  B. Neuschwander‐Tetri,et al.  Mechanisms of NAFLD development and therapeutic strategies , 2018, Nature Medicine.

[39]  F. He,et al.  Mutually exclusive acetylation and ubiquitylation of the splicing factor SRSF5 control tumor growth , 2018, Nature Communications.

[40]  J. Wrana,et al.  The E3 ubiquitin ligase SMURF1 regulates cell-fate specification and outflow tract septation during mammalian heart development , 2018, Scientific Reports.

[41]  T. Meyer,et al.  EMI1 switches from being a substrate to an inhibitor of APC/CCDH1 to start the cell cycle , 2018, Nature.

[42]  María del Mar Maldonado,et al.  Targeting Rac and Cdc42 GTPases in Cancer. , 2018, Cancer research.

[43]  Mathumai Kanapathipillai,et al.  Treating p53 Mutant Aggregation-Associated Cancer , 2018, Cancers.

[44]  R. Wei,et al.  Smurf1 regulates macrophage proliferation, apoptosis and migration via JNK and p38 MAPK signaling pathways , 2018, Molecular immunology.

[45]  Lingqiang Zhang,et al.  Smad ubiquitylation regulatory factor 1 promotes LIM‐homeobox gene 9 degradation and represses testosterone production in Leydig cells , 2018, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[46]  Guojin Wu,et al.  SMURF1 facilitates estrogen receptor ɑ signaling in breast cancer cells , 2018, Journal of Experimental & Clinical Cancer Research.

[47]  Gang Li,et al.  The role of CKIP-1 in osteoporosis development and treatment , 2018, Bone & joint research.

[48]  T. Komori Runx2, an inducer of osteoblast and chondrocyte differentiation , 2018, Histochemistry and Cell Biology.

[49]  T. Liang,et al.  Deubiquitylase USP9X suppresses tumorigenesis by stabilizing large tumor suppressor kinase 2 (LATS2) in the Hippo pathway , 2017, The Journal of Biological Chemistry.

[50]  Q. Lu,et al.  Cdc42 Signaling Pathway Inhibition as a Therapeutic Target in Ras- Related Cancers. , 2017, Current medicinal chemistry.

[51]  Wansong Lin,et al.  Kindlin-2 promotes hepatocellular carcinoma invasion and metastasis by increasing Wnt/β-catenin signaling , 2017, Journal of Experimental & Clinical Cancer Research.

[52]  M. Rapé,et al.  Ubiquitylation at the crossroads of development and disease , 2017, Nature Reviews Molecular Cell Biology.

[53]  Lingqiang Zhang,et al.  Smurf1 inhibits integrin activation by controlling Kindlin-2 ubiquitination and degradation , 2017, The Journal of cell biology.

[54]  P. Eyers,et al.  Tribbles in the 21st Century: The Evolving Roles of Tribbles Pseudokinases in Biology and Disease , 2017, Trends in cell biology.

[55]  F. Akhlaghi,et al.  Non-alcoholic fatty liver disease (NAFLD) – pathogenesis, classification, and effect on drug metabolizing enzymes and transporters , 2017, Drug metabolism reviews.

[56]  John B. Wallingford,et al.  Planar cell polarity in development and disease , 2017, Nature Reviews Molecular Cell Biology.

[57]  Ge Zhang,et al.  Targeting osteoblastic casein kinase-2 interacting protein-1 to enhance Smad-dependent BMP signaling and reverse bone formation reduction in glucocorticoid-induced osteoporosis , 2017, Scientific Reports.

[58]  T. Pap,et al.  Smad-dependent mechanisms of inflammatory bone destruction , 2016, Arthritis Research & Therapy.

[59]  Josef Michl,et al.  Emerging Role of MDM2 as Target for Anti-Cancer Therapy: A Review. , 2016, Annals of clinical and laboratory science.

[60]  H. So,et al.  SRSF5: a novel marker for small-cell lung cancer and pleural metastatic cancer. , 2016, Lung cancer.

[61]  A. Hata,et al.  TGF-β Signaling from Receptors to Smads. , 2016, Cold Spring Harbor perspectives in biology.

[62]  Yuxin Yin,et al.  USP9X destabilizes pVHL and promotes cell proliferation , 2016, Oncotarget.

[63]  S. Spencer,et al.  Irreversible APCCdh1 Inactivation Underlies the Point of No Return for Cell-Cycle Entry , 2016, Cell.

[64]  R. Derynck,et al.  TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. , 2016, Cold Spring Harbor perspectives in biology.

[65]  Yi-Ping Li,et al.  TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease , 2016, Bone Research.

[66]  G. Karsenty,et al.  Smurf1 Inhibits Osteoblast Differentiation, Bone Formation, and Glucose Homeostasis through Serine 148. , 2016, Cell reports.

[67]  H. Inuzuka,et al.  Smurf1 regulation of DAB2IP controls cell proliferation and migration , 2016, Oncotarget.

[68]  David Komander,et al.  Ubiquitin modifications , 2016, Cell Research.

[69]  F. Conlon,et al.  The Lhx9-integrin pathway is essential for positioning of the proepicardial organ , 2016, Development.

[70]  J. Gong,et al.  DAB2IP in cancer , 2015, Oncotarget.

[71]  J. Wallingford,et al.  Control of vertebrate core planar cell polarity protein localization and dynamics by Prickle 2 , 2015, Development.

[72]  W. Han,et al.  miRNA-497 Enhances the Sensitivity of Colorectal Cancer Cells to Neoadjuvant Chemotherapeutic Drug. , 2015, Current protein & peptide science.

[73]  Z. Yao,et al.  SND1 Acts Downstream of TGFβ1 and Upstream of Smurf1 to Promote Breast Cancer Metastasis. , 2015, Cancer research.

[74]  Lingqiang Zhang,et al.  F-box protein Fbxo3 targets Smurf1 ubiquitin ligase for ubiquitination and degradation. , 2015, Biochemical and biophysical research communications.

[75]  Yan Jin,et al.  The p53/miR-17/Smurf1 pathway mediates skeletal deformities in an age-related model via inhibiting the function of mesenchymal stem cells , 2015, Aging.

[76]  Sharad Kumar,et al.  NEDD4: The founding member of a family of ubiquitin-protein ligases. , 2015, Gene.

[77]  Jiayi Wang,et al.  TRIB2 inhibits Wnt/β‐Catenin/TCF4 signaling through its associated ubiquitin E3 ligases, β‐TrCP, COP1 and Smurf1, in liver cancer cells , 2014, FEBS letters.

[78]  R. G. Richards,et al.  Role and regulation of RUNX2 in osteogenesis. , 2014, European cells & materials.

[79]  Fan Yang,et al.  A feedback loop between RUNX2 and the E3 ligase SMURF1 in regulation of differentiation of human dental pulp stem cells. , 2014, Journal of endodontics.

[80]  N. Selvamurugan,et al.  A Positive Role of MicroRNA‐15b on Regulation of Osteoblast Differentiation , 2014, Journal of cellular physiology.

[81]  F. He,et al.  Selective Small Molecule Compounds Increase BMP-2 Responsiveness by Inhibiting Smurf1-mediated Smad1/5 Degradation , 2014, Scientific Reports.

[82]  Y. Lin,et al.  PKA/Smurf1 signaling-mediated stabilization of Nur77 is required for anticancer drug cisplatin-induced apoptosis , 2014, Oncogene.

[83]  Q. Pan,et al.  Impaired Phosphorylation and Ubiquitination by p70 S6 Kinase (p70S6K) and Smad Ubiquitination Regulatory Factor 1 (Smurf1) Promote Tribbles Homolog 2 (TRIB2) Stability and Carcinogenic Property in Liver Cancer* , 2013, The Journal of Biological Chemistry.

[84]  Craig Mickanin,et al.  TRAF4 promotes TGF-β receptor signaling and drives breast cancer metastasis. , 2013, Molecular cell.

[85]  Rong Zeng,et al.  Smurf1-Mediated Lys29-Linked Nonproteolytic Polyubiquitination of Axin Negatively Regulates Wnt/β-Catenin Signaling , 2013, Molecular and Cellular Biology.

[86]  Hongkai Ji,et al.  TRIB2 acts downstream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPα function. , 2013, Molecular cell.

[87]  Yi Tang,et al.  Ubiquitination of Tumor Necrosis Factor Receptor-associated Factor 4 (TRAF4) by Smad Ubiquitination Regulatory Factor 1 (Smurf1) Regulates Motility of Breast Epithelial and Cancer Cells* , 2013, The Journal of Biological Chemistry.

[88]  H. Ryoo,et al.  Tumor necrosis factor‐α enhances the transcription of smad ubiquitination regulatory factor 1 in an activating protein‐1‐ and runx2‐dependent manner , 2013, Journal of cellular physiology.

[89]  D. Larrieu,et al.  ING1 and ING2: multifaceted tumor suppressor genes , 2013, Cellular and Molecular Life Sciences.

[90]  M. Kirschner,et al.  Deubiquitinase FAM/USP9X Interacts with the E3 Ubiquitin Ligase SMURF1 Protein and Protects It from Ligase Activity-dependent Self-degradation , 2012, The Journal of Biological Chemistry.

[91]  M. Rapé,et al.  The ubiquitin code. , 2012, Annual review of biochemistry.

[92]  Wenyi Wei,et al.  Cdh1 regulates osteoblast function through an APC/C-independent modulation of Smurf1. , 2011, Molecular cell.

[93]  L. Tang,et al.  MiR‐17 Modulates Osteogenic Differentiation Through a Coherent Feed‐Forward Loop in Mesenchymal Stem Cells Isolated from Periodontal Ligaments of Patients with Periodontitis , 2011, Stem cells.

[94]  F. Ding,et al.  Binding of RhoA by the C2 domain of E3 ligase Smurf1 is essential for Smurf1‐regulated RhoA ubiquitination and cell protrusive activity , 2011, FEBS letters.

[95]  F. He,et al.  SCFFBXL15 regulates BMP signalling by directing the degradation of HECT‐type ubiquitin ligase Smurf1 , 2011, The EMBO journal.

[96]  F. He,et al.  Pivotal Role of the C2 Domain of the Smurf1 Ubiquitin Ligase in Substrate Selection*♦ , 2011, The Journal of Biological Chemistry.

[97]  K. Tomita,et al.  A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype , 2011, Molecular and Cellular Biochemistry.

[98]  M. Poo,et al.  Phosphorylation of E3 Ligase Smurf1 Switches Its Substrate Preference in Support of Axon Development , 2011, Neuron.

[99]  F. He,et al.  HECT ubiquitin ligase Smurf1 targets the tumor suppressor ING2 for ubiquitination and degradation , 2010, FEBS letters.

[100]  F. He,et al.  Smad Ubiquitylation Regulatory Factor 1/2 (Smurf1/2) Promotes p53 Degradation by Stabilizing the E3 Ligase MDM2* , 2010, The Journal of Biological Chemistry.

[101]  J. López-Novoa,et al.  The emerging role of TGF-beta superfamily coreceptors in cancer. , 2009, Biochimica et biophysica acta.

[102]  D. Komander The emerging complexity of protein ubiquitination. , 2009, Biochemical Society transactions.

[103]  Hiroyuki Takahashi,et al.  Staphylococcal nuclease domain-containing protein 1 as a potential tissue marker for prostate cancer. , 2009, The American journal of pathology.

[104]  J. Wrana,et al.  Regulation of Planar Cell Polarity by Smurf Ubiquitin Ligases , 2009, Cell.

[105]  Aaron Ciechanover,et al.  The HECT family of E3 ubiquitin ligases: multiple players in cancer development. , 2008, Cancer cell.

[106]  T. Nagase,et al.  Smurf1 directly targets hPEM-2, a GEF for Cdc42, via a novel combination of protein interaction modules in the ubiquitin-proteasome pathway , 2008, Biological chemistry.

[107]  Daniel J. Klionsky,et al.  Autophagy fights disease through cellular self-digestion , 2008, Nature.

[108]  T. Sugimura,et al.  SND1, a component of RNA-induced silencing complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis. , 2007, Cancer research.

[109]  Erik Sahai,et al.  Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility , 2007, The Journal of cell biology.

[110]  L. Titus,et al.  LIM Mineralization Protein-1 Potentiates Bone Morphogenetic Protein Responsiveness via a Novel Interaction with Smurf1 Resulting in Decreased Ubiquitination of Smads* , 2006, Journal of Biological Chemistry.

[111]  C. Deng,et al.  Ubiquitin Ligase Smurf1 Controls Osteoblast Activity and Bone Homeostasis by Targeting MEKK2 for Degradation , 2005, Cell.

[112]  O. Birk,et al.  The LIM homeobox gene Lhx9 is essential for mouse gonad formation , 2000, Nature.

[113]  T. Reid,et al.  Identification and Characterization of hPEM-2, a Guanine Nucleotide Exchange Factor Specific for Cdc42* , 1999, The Journal of Biological Chemistry.

[114]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[115]  P. Xie,et al.  USF2 inhibits the transcriptional activity of Smurf1 and Smurf2 to promote breast cancer tumorigenesis. , 2019, Cellular signalling.

[116]  T. Komori Roles of Runx2 in Skeletal Development. , 2017, Advances in Experimental Medicine and Biology.

[117]  Fumiyoshi Yamazaki,et al.  The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus , 2014, Brain Structure and Function.

[118]  S. A. Nair,et al.  Smurf E3 ubiquitin ligases at the cross roads of oncogenesis and tumor suppression. , 2013, Biochimica et biophysica acta.

[119]  David A. Cheresh,et al.  Integrins in cancer: biological implications and therapeutic opportunities , 2010, Nature Reviews Cancer.

[120]  福永 絵里奈 Smurf2 induces ubiquitin-dependent degradation of Smurf1 to prevent migration of breast cancer cells , 2010 .