A local fuzzy thresholding methodology for multiregion image segmentation

Thresholding is a direct and simple approach to extract different regions from an image. In its basic formulation, thresholding searches for a global value that maximizes the separation between output classes. The use of a single hard threshold value is precisely the source of important segmentation errors in many scenarios like noisy images or uneven illumination. If no connectivity or closed objects are considered, the method is prone to produce isolated pixels. In this paper a new multiregion thresholding methodology is presented to overcome the common drawbacks of thresholding methods when images are corrupted with artifacts and noise. It is based on relating each pixel in the image to different output centroids via a fuzzy membership function, avoiding any initial hard decision. The starting point of the technique is the definition of the output centroids using a clustering method compatible with most thresholding techniques in the literature. The method makes use of the spatial information through a local aggregation step where the membership degree of each pixel is modified by local information that takes into account the memberships of the surrounding pixels. This makes the method robust to noise and artifacts. The general formulation of the proposed methodology allows the design of spatial aggregations for multiple applications, including the possibility of including heuristic information via a fuzzy inference rule base.

[1]  L. Mahmoudi,et al.  A survey of entropy image thresholding techniques , 2012, 2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA).

[2]  Andrew K. C. Wong,et al.  A new method for gray-level picture thresholding using the entropy of the histogram , 1985, Comput. Vis. Graph. Image Process..

[3]  Mao-Jiun J. Wang,et al.  Image thresholding by minimizing the measures of fuzzines , 1995, Pattern Recognit..

[4]  Ming-Huwi Horng,et al.  Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization , 2009, Expert Syst. Appl..

[5]  Dimitri Van De Ville,et al.  Noise reduction by fuzzy image filtering , 2003, IEEE Trans. Fuzzy Syst..

[6]  Luigi Cinque,et al.  Image thresholding using fuzzy entropies , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[7]  Ludovic Macaire,et al.  Color Image Segmentation by Analysis of 3D Histogram with Fuzzy Morphological Filters , 2003 .

[8]  R. Kayalvizhi,et al.  Modified bacterial foraging algorithm based multilevel thresholding for image segmentation , 2011, Eng. Appl. Artif. Intell..

[9]  Cesar Palencia,et al.  A Generalized Gamma Mixture Model for Ultrasonic Tissue Characterization , 2012, Comput. Math. Methods Medicine.

[10]  D. M. Drumheller General expressions for Rician density and distribution functions , 1993 .

[11]  George Cybenko,et al.  A fuzzy MHT algorithm applied to text-based information tracking , 2002, IEEE Trans. Fuzzy Syst..

[12]  Hamid R. Tizhoosh,et al.  Image thresholding using type II fuzzy sets , 2005, Pattern Recognit..

[13]  Sim Heng Ong,et al.  Level-set segmentation of brain tumors using a threshold-based speed function , 2010, Image Vis. Comput..

[14]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Fabrizio Russo,et al.  FIRE operators for image processing , 1999, Fuzzy Sets Syst..

[16]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[17]  Etienne Kerre,et al.  Fuzzy techniques in image processing , 2000 .

[18]  Paul L. Rosin,et al.  Evaluation of global image thresholding for change detection , 2003, Pattern Recognit. Lett..

[19]  Ronald W. Schafer,et al.  Multilevel thresholding using edge matching , 1988, Comput. Vis. Graph. Image Process..

[20]  C. V. Jawahar,et al.  Investigations on fuzzy thresholding based on fuzzy clustering , 1997, Pattern Recognit..

[21]  Daoqiang Zhang,et al.  Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation , 2007, Pattern Recognit..

[22]  Sim Heng Ong,et al.  Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation , 2011, Comput. Biol. Medicine.

[23]  C. K. Leung,et al.  Maximum a posteriori spatial probability segmentation , 1997 .

[24]  Marina Meila,et al.  Comparing clusterings: an axiomatic view , 2005, ICML.

[25]  M. Forero-Vargas,et al.  Fuzzy Thresholding and Histogram Analysis , 2003 .

[26]  Nabih N. Abdelmalek,et al.  Maximum likelihood thresholding based on population mixture models , 1992, Pattern Recognit..

[27]  Klaus-Peter Adlassnig,et al.  Fuzzy systems in medicine , 2001, EUSFLAT Conf..

[28]  Xiao-Jun Zeng,et al.  Approximation theory of fuzzy systems-SISO case , 1994, IEEE Trans. Fuzzy Syst..

[29]  I. Sethi,et al.  Thresholding based on histogram approximation , 1995 .

[30]  Bahriye Akay,et al.  A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding , 2013, Appl. Soft Comput..

[31]  Nirmal K. Bose,et al.  Generating fuzzy membership function with self-organizing feature map , 2006, Pattern Recognit. Lett..

[32]  Azriel Rosenfeld,et al.  Image enhancement and thresholding by optimization of fuzzy compactness , 1988, Pattern Recognit. Lett..

[33]  Santiago Aja-Fernández,et al.  On the influence of interpolation on probabilistic models for ultrasonic images , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[34]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[35]  Jan Sijbers,et al.  Reduction of ring artefacts in high resolution micro-CT reconstructions. , 2004, Physics in medicine and biology.

[36]  J. Mendel Fuzzy logic systems for engineering: a tutorial , 1995, Proc. IEEE.

[37]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[38]  Scott T. Acton,et al.  Level set analysis for leukocyte detection and tracking , 2004, IEEE Transactions on Image Processing.

[39]  Flavio R. Dias Velasco,et al.  Thresholding Using the Isodata Clustering Algorithm , 1979 .

[40]  Agus Zainal Arifin,et al.  Ultrafuzziness Optimization Based on Type II Fuzzy Sets for Image Thresholding , 2010 .

[41]  V. V. S. Sarma,et al.  Estimation of fuzzy memberships from histograms , 1985, Inf. Sci..

[42]  J. Gil,et al.  Iterative thresholding for segmentation of cells from noisy images , 2000, Journal of microscopy.

[43]  Thierry Pun,et al.  Entropic thresholding, a new approach , 1981 .

[44]  Hamid R. Tizhoosh,et al.  Fast fuzzy edge detection , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[45]  Luis Garmendia,et al.  The Evolution of the Concept of Fuzzy Measure , 2005, Intelligent Data Mining.

[46]  Pacheri Bari,et al.  Unsupervised Image Thresholding using Fuzzy Measures , 2011 .

[47]  T Divakar,et al.  Unsupervised Image Thresholding using Fuzzy Measures , 2011 .

[48]  Lawrence O'Gorman Binarization and Multithresholding of Document Images Using Connectivity , 1994, CVGIP Graph. Model. Image Process..

[49]  Paul L. Rosin Thresholding for change detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[50]  D. Manimegalai,et al.  Quantitative fuzzy measures for threshold selection , 2000, Pattern Recognit. Lett..

[51]  Sankar K. Pal,et al.  Automatic grey level thresholding through index of fuzziness and entropy , 1983, Pattern Recognit. Lett..

[52]  Thierry Pun,et al.  A new method for grey-level picture thresholding using the entropy of the histogram , 1980 .

[53]  L. Pan,et al.  A Novel Fuzzy C-Means Clustering Algorithm for Image Thresholding , 2004 .

[54]  Rui Seara,et al.  Image segmentation by histogram thresholding using fuzzy sets , 2002, IEEE Trans. Image Process..

[55]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[56]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[57]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[58]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Tzong-Jer Chen,et al.  Fuzzy c-means clustering with spatial information for image segmentation , 2006, Comput. Medical Imaging Graph..

[60]  C. A. Murthy,et al.  Fuzzy thresholding: mathematical framework, bound functions and weighted moving average technique , 1990, Pattern Recognit. Lett..

[61]  Chi-Yo Huang,et al.  A Novel Method for Fuzzy Measure Identification , 2011 .

[62]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[63]  A. Masood,et al.  Fuzzy C Mean Thresholding based Level Set for Automated Segmentation of Skin Lesions , 2013, Journal of Signal and Information Processing.

[64]  Rae-Hong Park,et al.  Comments on 'An optimal multiple threshold scheme for image segmentation' , 1990, IEEE Trans. Syst. Man Cybern..

[65]  Sanguklee,et al.  A comparative performance study of several global thresholding techniques for segmentation , 1990 .