Interactive proofs with efficient quantum prover for recursive Fourier sampling

We consider the recursive Fourier sampling problem (RFS), and show that there exists an interactive proof for RFS with an efficient classical verifier and efficient quantum prover.

[1]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[2]  Scott Aaronson,et al.  Quantum lower bound for recursive fourier sampling , 2002, Quantum Inf. Comput..

[3]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[4]  Sean Hallgren,et al.  Superpolynomial Speedups Based on Almost Any Quantum Circuit , 2008, ICALP.

[5]  Andrew Chi-Chih Yao,et al.  Self testing quantum apparatus , 2004, Quantum Inf. Comput..

[6]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[7]  Elad Eban,et al.  Interactive Proofs For Quantum Computations , 2017, 1704.04487.

[8]  Carsten Lund,et al.  Algebraic methods for interactive proof systems , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[9]  Benjamin Johnson,et al.  Upper and lower bounds for recursive fourier sampling , 2008 .

[10]  Adi Shamir,et al.  IP = PSPACE , 1992, JACM.

[11]  E. Kashefi,et al.  Unconditionally verifiable blind computation , 2012 .

[12]  Frédéric Magniez,et al.  Self-testing of Quantum Circuits , 2006, ICALP.

[13]  Laurent Kott Proceedings of the 13th International Colloquium on Automata, Languages and Programming , 1986 .