Boosting-based transductive learning for text detection

We present a promising new framework for improving boosting performance with transductive inference when training an automatic text detector. The resulting detector is fast and efficient, and it exhibits high accuracy on a large test set.

[1]  D. Opitz,et al.  Popular Ensemble Methods: An Empirical Study , 1999, J. Artif. Intell. Res..

[2]  Alejandro Echeverría,et al.  Evolutionary discriminant analysis , 2006, IEEE Transactions on Evolutionary Computation.

[3]  Anders Krogh,et al.  Neural Network Ensembles, Cross Validation, and Active Learning , 1994, NIPS.

[4]  David S. Doermann,et al.  Machine printed text and handwriting identification in noisy document images , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[6]  Stan Z. Li,et al.  FloatBoost learning and statistical face detection , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[8]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[9]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Xin Yao,et al.  Diversity creation methods: a survey and categorisation , 2004, Inf. Fusion.

[11]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  L. Petersson,et al.  Response Binning: Improved Weak Classifiers for Boosting , 2006, 2006 IEEE Intelligent Vehicles Symposium.

[14]  Leslie G. Valiant,et al.  Cryptographic Limitations on Learning Boolean Formulae and Finite Automata , 1993, Machine Learning: From Theory to Applications.

[15]  Yoram Singer,et al.  Logistic Regression, AdaBoost and Bregman Distances , 2000, Machine Learning.

[16]  Andreas Zell,et al.  Combining Adaboost learning and evolutionary search to select features for real-time object detection , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[17]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[18]  Henrique S. Malvar,et al.  An efficient binary image activity detector based on connected components , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[19]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[20]  Gary Bradski,et al.  Learning-Based Computer Vision with Intels Open Source Computer Vision Library , 2005 .

[21]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[22]  Javier Ruiz-del-Solar,et al.  Gender Classification of Faces Using Adaboost , 2006, CIARP.

[23]  Brendan McCane,et al.  On Training Cascade Face Detectors , 2003 .

[24]  Hans Peter Graf,et al.  Analysis of complex and noisy check images , 1995, Proceedings., International Conference on Image Processing.

[25]  Christophe Garcia,et al.  Convolutional face finder: a neural architecture for fast and robust face detection , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Ji-Xin Qian,et al.  An improved particle swarm optimization algorithm with neighborhoods topologies , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[27]  Stefano Cagnoni,et al.  Particle Swarm Optimization for Object Detection and Segmentation , 2007, EvoWorkshops.

[28]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[29]  Robert M. Haralick,et al.  CD-ROM document database standard , 1993, Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR '93).

[30]  Lei Wang,et al.  A study of AdaBoost with SVM based weak learners , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[31]  Andries Petrus Engelbrecht,et al.  Particle Swarm Optimization for Pattern Recognition and Image Processing , 2006, Swarm Intelligence in Data Mining.

[32]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  C. Metz ROC Methodology in Radiologic Imaging , 1986, Investigative radiology.

[34]  Robert E. Schapire,et al.  The Boosting Approach to Machine Learning An Overview , 2003 .

[35]  Fabien Moutarde,et al.  COMBINING ADABOOST WITH A HILL-CLIMBING EVOLUTIONARY FEATURE SEARCH FOR EFFICIENT TRAINING OF PERFORMANT VISUAL OBJECT DETECTORS , 2006 .

[36]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[37]  Giorgio Valentini,et al.  Ensembles of Learning Machines , 2002, WIRN.

[38]  Chuanyi Ji,et al.  Combinations of Weak Classifiers , 1996, NIPS.

[39]  Akinobu Shimizu,et al.  Robust face detection using Gabor filter features , 2005, Pattern Recognit. Lett..