A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields

We propose an alternative method to generate samples of a spatially correlated random field with applications to large-scale problems for forward propagation of uncertainty. A classical approach for generating these samples is the Karhunen--Loeve (KL) decomposition. However, the KL expansion requires solving a dense eigenvalue problem and is therefore computationally infeasible for large-scale problems. Sampling methods based on stochastic partial differential equations provide a highly scalable way to sample Gaussian fields, but the resulting parametrization is mesh dependent. We propose a multilevel decomposition of the stochastic field to allow for scalable, hierarchical sampling based on solving a mixed finite element formulation of a stochastic reaction-diffusion equation with a random, white noise source function. Numerical experiments are presented to demonstrate the scalability of the sampling method as well as numerical results of multilevel Monte Carlo simulations for a subsurface porous media f...

[1]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[2]  James T. Riley,et al.  A note on the optimality of the Karhunen-Loeve expansion , 1983, Pattern Recognit. Lett..

[3]  Panayot S. Vassilevski,et al.  Exact de Rham Sequences of Spaces Defined on Macro-Elements in Two and Three Spatial Dimensions , 2008, SIAM J. Sci. Comput..

[4]  Panayot S. Vassilevski,et al.  Parallel Auxiliary Space AMG Solver for H(div) Problems , 2012, SIAM J. Sci. Comput..

[5]  Stephan Mertens,et al.  Random numbers for large scale distributed Monte Carlo simulations , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Panayot S. Vassilevski,et al.  Interior penalty preconditioners for mixed finite element approximations of elliptic problems , 1996, Math. Comput..

[7]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[8]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[9]  Kent-André Mardal,et al.  Preconditioning discretizations of systems of partial differential equations , 2011, Numer. Linear Algebra Appl..

[10]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[11]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[12]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[13]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[14]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[15]  James Martin,et al.  A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion , 2013, SIAM J. Sci. Comput..

[16]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[17]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[18]  L. Gelhar Stochastic Subsurface Hydrology , 1992 .

[19]  D. Arnold Finite Element Exterior Calculus , 2018 .

[20]  Barbara I. Wohlmuth,et al.  Scheduling Massively Parallel Multigrid for Multilevel Monte Carlo Methods , 2016, SIAM J. Sci. Comput..

[21]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[22]  Peter K. Kitanidis,et al.  Randomized algorithms for generalized Hermitian eigenvalue problems with application to computing Karhunen–Loève expansion , 2013, Numer. Linear Algebra Appl..

[23]  Finn Lindgren,et al.  Bayesian Spatial Modelling with R-INLA , 2015 .

[24]  Michel Loève,et al.  Probability Theory I , 1977 .

[25]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[26]  Haavard Rue,et al.  Multivariate Gaussian Random Fields with Oscillating Covariance Functions using Systems of Stochastic Partial Differential Equations , 2013, 1307.1384.

[27]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[28]  George Christakos,et al.  Modern Spatiotemporal Geostatistics , 2000 .

[29]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[30]  Panayot S. Vassilevski,et al.  Element agglomeration coarse Raviart-Thomas spaces with improved approximation properties , 2012, Numer. Linear Algebra Appl..

[31]  F. Lindgren,et al.  Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping , 2011, 1104.3436.

[32]  Panayot S. Vassilevski,et al.  The Construction of the Coarse de Rham Complexes with Improved Approximation Properties , 2014, Comput. Methods Appl. Math..

[33]  Ehsan Goodarzi,et al.  Introduction to Risk and Uncertainty in Hydrosystem Engineering , 2013 .