Scruff: A Deep Probabilistic Cognitive Architecture for Predictive Processing

The theory of predictive processing encompasses several elements that make it attractive as the underlying computational approach for a cognitive architecture. We introduce a new cognitive architecture, Scruff, capable of implementing predictive processing models by incorporating key properties of neural networks into the Bayesian probabilistic programming framework. We illustrate the Scruff approach with conditional linear Gaussian (CLG) models, noisy-or models, and a Bayesian variation of the Rao-Ballard linear algebra model of predictive vision.

[1]  Joshua B. Tenenbaum,et al.  Human-level concept learning through probabilistic program induction , 2015, Science.

[2]  Karl J. Friston,et al.  Predictive coding under the free-energy principle , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  Karl J. Friston,et al.  Active inference and cognitive-emotional interactions in the brain. , 2015, The Behavioral and brain sciences.

[4]  L. F. Barrett,et al.  Redefining the Role of Limbic Areas in Cortical Processing , 2016, Trends in Cognitive Sciences.

[5]  W. K. Simmons,et al.  Interoceptive predictions in the brain , 2015, Nature Reviews Neuroscience.

[6]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[7]  Karl J. Friston,et al.  From cognitivism to autopoiesis: towards a computational framework for the embodied mind , 2016, Synthese.

[8]  Angelo Cangelosi,et al.  Epigenetic Robotics Architecture (ERA) , 2010, IEEE Transactions on Autonomous Mental Development.

[9]  David Heckerman,et al.  Causal independence for probability assessment and inference using Bayesian networks , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[10]  Joshua B. Tenenbaum,et al.  Building machines that learn and think like people , 2016, Behavioral and Brain Sciences.

[11]  J. Zaki,et al.  Cue Integration , 2013, Perspectives on psychological science : a journal of the Association for Psychological Science.

[12]  Renaud Jardri,et al.  Circular inference: mistaken belief, misplaced trust , 2016, Current Opinion in Behavioral Sciences.

[13]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[14]  J. Hohwy The Predictive Mind , 2013 .

[15]  David A. McAllester,et al.  Effective Bayesian Inference for Stochastic Programs , 1997, AAAI/IAAI.

[16]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[17]  Karl J. Friston Hierarchical Models in the Brain , 2008, PLoS Comput. Biol..

[18]  Dustin Tran,et al.  Edward: A library for probabilistic modeling, inference, and criticism , 2016, ArXiv.

[19]  George F. Luger,et al.  Toward General Analysis of Recursive Probability Models , 2001, UAI.

[20]  Karl J. Friston,et al.  A Bayesian Foundation for Individual Learning Under Uncertainty , 2011, Front. Hum. Neurosci..

[21]  Joshua B. Tenenbaum,et al.  Church: a language for generative models , 2008, UAI.

[22]  L. F. Barrett The theory of constructed emotion: an active inference account of interoception and categorization , 2016, Social cognitive and affective neuroscience.

[23]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[24]  Charles Kemp,et al.  How to Grow a Mind: Statistics, Structure, and Abstraction , 2011, Science.

[25]  S. Lauritzen Propagation of Probabilities, Means, and Variances in Mixed Graphical Association Models , 1992 .

[26]  S. Thompson-Schill,et al.  Conceptual Penetration of Visual Processing , 2010, Psychological science.

[27]  Gary Marcus,et al.  Deep Learning: A Critical Appraisal , 2018, ArXiv.

[28]  Frank D. Wood,et al.  Inference Compilation and Universal Probabilistic Programming , 2016, AISTATS.

[29]  Jacques Carette,et al.  Probabilistic Inference by Program Transformation in Hakaru (System Description) , 2016, FLOPS.

[30]  Avi Pfeffer,et al.  The Design and Implementation of IBAL: A General-Purpose Probabilistic Language , 2005 .

[31]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[32]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[33]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.