An accurate O(N2) floating point algorithm for the Crum transform of the KdV equation
暂无分享,去创建一个
[1] Ivan Christov,et al. Internal solitary waves in the ocean: Analysis using the periodic, inverse scattering transform , 2007, Math. Comput. Simul..
[2] B. Simon,et al. Spectral deformations of one-dimensional Schrödinger operators , 1996 .
[3] Sander Wahls,et al. Higher Order Exponential Splittings for the Fast Non-Linear Fourier Transform of the Korteweg-De Vries Equation , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[4] A. Kara,et al. Investigation of Coriolis effect on oceanic flows and its bifurcation via geophysical Korteweg–de Vries equation , 2020, Numerical Methods for Partial Differential Equations.
[5] Stephan ten Brink,et al. Successive Eigenvalue Removal for Multi-Soliton Spectral Amplitude Estimation , 2020, Journal of Lightwave Technology.
[6] Jaemin Shin,et al. Computational methods for some inverse scattering problems , 2009, Appl. Math. Comput..
[7] G. Lamb. Elements of soliton theory , 1980 .
[8] V. E. Adler. A modification of Crum's method , 1994 .
[10] Sander Wahls,et al. Fast Nonlinear Fourier Transform Algorithms Using Higher Order Exponential Integrators , 2019, IEEE Access.
[11] P. Sabatier,et al. Inverse Problems in Quantum Scattering Theory , 1977 .
[12] Yuji Kodama,et al. Note on Asymptotic Solutions of the Korteweg‐de Vries Equation with Solitons , 1982 .
[13] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[14] A. Gelash,et al. Strongly interacting soliton gas and formation of rogue waves , 2018, Physical Review E.
[15] Lloyd N. Trefethen,et al. Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..
[16] Mark J. Ablowitz,et al. Solitons and the Inverse Scattering Transform , 1981 .
[17] Sander Wahls,et al. FNFT: A Software Library for Computing Nonlinear Fourier Transforms , 2018, J. Open Source Softw..
[18] New possibilities for supersymmetry breakdown in quantum mechanics and second-order irreducible Darboux transformations , 1999, quant-ph/9904009.
[19] J. Pöschel,et al. Inverse spectral theory , 1986 .
[20] Hugo D. Wahlquist,et al. Backlund transformation for solutions of the Korteweg-de Vries equation , 1973 .
[21] Denys Makarov,et al. Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons , 2012, Nature Communications.
[22] D. Levi,et al. Dressing methodvs. classical Darboux transformation , 1984 .
[23] A. Osborne,et al. Computation of the direct scattering transform for the nonlinear Schroedinger equation , 1992 .
[24] A. Kasman,et al. Glimpses of Soliton Theory: The Algebra and Geometry of Nonlinear Pdes , 2010 .
[25] B. M. Levitan,et al. Inverse Sturm-Liouville Problems , 1987 .
[26] V. Zakharov,et al. Korteweg-de Vries equation: A completely integrable Hamiltonian system , 1971 .
[27] T. Trogdon,et al. Numerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations , 2012 .
[28] J. C. Misra,et al. A study of solitary waves in a tapered aorta by using the theory of solitons , 2007, Comput. Math. Appl..
[29] A. Osborne,et al. Nonlinear Fourier analysis for the infinite-interval Korteweg-de Vries equation I: an algorithm for the direct scattering transform , 1991 .
[30] P. Lax. INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .
[31] M. García-Ferrero,et al. Oscillation Theorems for the Wronskian of an Arbitrary Sequence of Eigenfunctions of Schrödinger’s Equation , 2014, 1408.0883.
[32] Saudi Arabia,et al. New Exact Solutions of KdV Equation in an Elastic Tube Filled with a Variable Viscosity Fluid , 2012 .
[33] M. Ablowitz,et al. The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .
[34] H. Segur,et al. The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments , 1974, Journal of Fluid Mechanics.
[35] P. Deift,et al. Inverse scattering on the line , 1979 .
[36] M. Ablowitz. Integrability and Nonlinear Waves , 2020 .
[37] Irina Vaseva,et al. Introducing phase jump tracking - a fast method for eigenvalue evaluation of the direct Zakharov-Shabat problem , 2020, ArXiv.
[38] Matthias Becker,et al. Analysis of Subaerial Landslide Data Using Nonlinear Fourier Transform Based on Korteweg-deVries Equation (KdV-NLFT) , 2018, Journal of Earthquake and Tsunami.
[39] V. Matveev,et al. Darboux Transformations and Solitons , 1992 .
[40] Sander Wahls,et al. Soliton Phase Shift Calculation for the Korteweg–De Vries Equation , 2019, IEEE Access.
[41] D. Crighton. Applications of KdV , 1995 .
[42] M. Crum. ASSOCIATED STURM-LIOUVILLE SYSTEMS , 1999, physics/9908019.
[43] R. Meinel,et al. General N-soliton solution of the AKNS class on arbitrary background , 1984 .
[44] Zixiang Zhou,et al. Darboux Transformations in Integrable Systems , 2005 .
[45] Sebastiano Seatzu,et al. Structured matrix algorithms for inverse scattering on the line , 2007 .
[46] D. Korteweg,et al. XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .
[47] George B. Arfken,et al. Sturm-Liouville Theory , 2012 .
[48] C. S. Gardner,et al. Method for solving the Korteweg-deVries equation , 1967 .