An accurate O(N2) floating point algorithm for the Crum transform of the KdV equation

Abstract We present an algorithm to compute the N -fold Crum transform (also known as the dressing method) for the Korteweg–de Vries equation (KdV) accurately in floating point arithmetic. This transform can be used to generate solutions of the KdV equation, e.g. as a part of the inverse Non-linear Fourier Transform. Crum transform algorithms that sequentially add the N eigenvalues to the solution with a chain of N Darboux transforms have a computational complexity of O ( N 2 ) , but suffer inevitably from singular intermediate results during the computation of certain regular Crum transforms. Algorithms that add all N eigenvalues at once do not have that flaw, but have a complexity of O ( N 3 ) and are often even less accurate for other reasons. Our algorithm has a complexity of O ( N 2 ) . It makes use of a chain of 2-fold Crum transforms and, if N is odd, one Darboux transform. Hence, our algorithm adds two eigenvalues at a time instead of one whenever possible. We prove that with the right eigenvalue ordering, this avoids artificial singularities for all regular Crum transforms. Furthermore, we demonstrate that our algorithm is considerably more accurate in floating point arithmetic than benchmark algorithms found in the literature. At the same error tolerance, N can be three to seven times as high when using our algorithm instead of the best among the benchmark algorithms.

[1]  Ivan Christov,et al.  Internal solitary waves in the ocean: Analysis using the periodic, inverse scattering transform , 2007, Math. Comput. Simul..

[2]  B. Simon,et al.  Spectral deformations of one-dimensional Schrödinger operators , 1996 .

[3]  Sander Wahls,et al.  Higher Order Exponential Splittings for the Fast Non-Linear Fourier Transform of the Korteweg-De Vries Equation , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[4]  A. Kara,et al.  Investigation of Coriolis effect on oceanic flows and its bifurcation via geophysical Korteweg–de Vries equation , 2020, Numerical Methods for Partial Differential Equations.

[5]  Stephan ten Brink,et al.  Successive Eigenvalue Removal for Multi-Soliton Spectral Amplitude Estimation , 2020, Journal of Lightwave Technology.

[6]  Jaemin Shin,et al.  Computational methods for some inverse scattering problems , 2009, Appl. Math. Comput..

[7]  G. Lamb Elements of soliton theory , 1980 .

[8]  V. E. Adler A modification of Crum's method , 1994 .

[10]  Sander Wahls,et al.  Fast Nonlinear Fourier Transform Algorithms Using Higher Order Exponential Integrators , 2019, IEEE Access.

[11]  P. Sabatier,et al.  Inverse Problems in Quantum Scattering Theory , 1977 .

[12]  Yuji Kodama,et al.  Note on Asymptotic Solutions of the Korteweg‐de Vries Equation with Solitons , 1982 .

[13]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[14]  A. Gelash,et al.  Strongly interacting soliton gas and formation of rogue waves , 2018, Physical Review E.

[15]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[16]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[17]  Sander Wahls,et al.  FNFT: A Software Library for Computing Nonlinear Fourier Transforms , 2018, J. Open Source Softw..

[18]  New possibilities for supersymmetry breakdown in quantum mechanics and second-order irreducible Darboux transformations , 1999, quant-ph/9904009.

[19]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[20]  Hugo D. Wahlquist,et al.  Backlund transformation for solutions of the Korteweg-de Vries equation , 1973 .

[21]  Denys Makarov,et al.  Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons , 2012, Nature Communications.

[22]  D. Levi,et al.  Dressing methodvs. classical Darboux transformation , 1984 .

[23]  A. Osborne,et al.  Computation of the direct scattering transform for the nonlinear Schroedinger equation , 1992 .

[24]  A. Kasman,et al.  Glimpses of Soliton Theory: The Algebra and Geometry of Nonlinear Pdes , 2010 .

[25]  B. M. Levitan,et al.  Inverse Sturm-Liouville Problems , 1987 .

[26]  V. Zakharov,et al.  Korteweg-de Vries equation: A completely integrable Hamiltonian system , 1971 .

[27]  T. Trogdon,et al.  Numerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations , 2012 .

[28]  J. C. Misra,et al.  A study of solitary waves in a tapered aorta by using the theory of solitons , 2007, Comput. Math. Appl..

[29]  A. Osborne,et al.  Nonlinear Fourier analysis for the infinite-interval Korteweg-de Vries equation I: an algorithm for the direct scattering transform , 1991 .

[30]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[31]  M. García-Ferrero,et al.  Oscillation Theorems for the Wronskian of an Arbitrary Sequence of Eigenfunctions of Schrödinger’s Equation , 2014, 1408.0883.

[32]  Saudi Arabia,et al.  New Exact Solutions of KdV Equation in an Elastic Tube Filled with a Variable Viscosity Fluid , 2012 .

[33]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[34]  H. Segur,et al.  The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments , 1974, Journal of Fluid Mechanics.

[35]  P. Deift,et al.  Inverse scattering on the line , 1979 .

[36]  M. Ablowitz Integrability and Nonlinear Waves , 2020 .

[37]  Irina Vaseva,et al.  Introducing phase jump tracking - a fast method for eigenvalue evaluation of the direct Zakharov-Shabat problem , 2020, ArXiv.

[38]  Matthias Becker,et al.  Analysis of Subaerial Landslide Data Using Nonlinear Fourier Transform Based on Korteweg-deVries Equation (KdV-NLFT) , 2018, Journal of Earthquake and Tsunami.

[39]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[40]  Sander Wahls,et al.  Soliton Phase Shift Calculation for the Korteweg–De Vries Equation , 2019, IEEE Access.

[41]  D. Crighton Applications of KdV , 1995 .

[42]  M. Crum ASSOCIATED STURM-LIOUVILLE SYSTEMS , 1999, physics/9908019.

[43]  R. Meinel,et al.  General N-soliton solution of the AKNS class on arbitrary background , 1984 .

[44]  Zixiang Zhou,et al.  Darboux Transformations in Integrable Systems , 2005 .

[45]  Sebastiano Seatzu,et al.  Structured matrix algorithms for inverse scattering on the line , 2007 .

[46]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[47]  George B. Arfken,et al.  Sturm-Liouville Theory , 2012 .

[48]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .