Characteristics of monopole antenna plasmas for TEOS PECVD

[1]  H. Deguchi,et al.  Effects of Antenna Size and Configurations in Large-Area RF Plasma Production with Internal Low-Inductance Antenna Units , 2006 .

[2]  Kazuo Takahashi,et al.  Characterization of Inductively-Coupled RF Plasma Sources with Multiple Low-Inductance Antenna Units , 2006 .

[3]  T. Fuyuki,et al.  Development of ALD/PECVD Reactor for High Quality LTPS-TFTs Insulator , 2006 .

[4]  Y. Takeuchi,et al.  A technique for uniform generation of very-high-frequency plasma suited to large-area thin-film deposition , 2006 .

[5]  C. Winstead,et al.  Electron collision cross sections for tetraethoxysilane , 2002 .

[6]  E. Quandt,et al.  Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy , 2000 .

[7]  G. Turban,et al.  Estimation of the TEOS dissociation coefficient by electron impact , 2000 .

[8]  Hideo Sugai,et al.  Plasma Absorption Probe for Measuring Electron Density in an Environment Soiled with Processing Plasmas , 1999 .

[9]  K. Okimura,et al.  Dissociation processes in plasma enhanced chemical vapor deposition of SiO2 films using tetraethoxysilane , 1998 .

[10]  M. Nagatsu,et al.  High-density flat plasma production based on surface waves , 1998 .

[11]  Y. Takeuchi,et al.  Inductively coupled radio frequency plasma chemical vapor deposition using a ladder‐shaped antenna , 1996 .

[12]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[13]  T. Kawahara,et al.  Reaction Mechanism of Chemical Vapor Deposition Using Tetraethylorthosilicate and Ozone at Atmospheric Pressure , 1992 .