Electrochemical impedance spectroscopy in interfacial studies

An important role of the electrochemical impedance spectroscopy (EIS) is the characterization of the electrical double layer formed at the electrode/electrolyte interfaces. The phenomenological double layer studies with an aqueous and ionic liquid electrolytes are reviewed with a conclusion that the double-layer capacitance is frequency dependent as the rule rather than the exception. We discuss the impedance consequences of the non-uniform current distribution along the electrochemical interface, which also contributes to the apparent frequency dependence of the capacitance. Finally, we show recent articles on non-conventional EIS techniques with high lateral resolution or enabling fast measurements.

[1]  Ricardo P. Nogueira,et al.  Relationship between the Origin of Constant-Phase Element Behavior in Electrochemical Impedance Spectroscopy and Electrode Surface Structure , 2015 .

[2]  Renata Costa,et al.  Charge Storage on Ionic Liquid Electric Double Layer: The Role of the Electrode Material , 2015 .

[3]  M. Orazem,et al.  Influence of Micrometric-Scale Electrode Heterogeneity on Electrochemical Impedance Spectroscopy , 2016 .

[4]  J. Newman Resistance for Flow of Current to a Disk , 1966 .

[5]  Alexei A Kornyshev,et al.  Double-layer in ionic liquids: paradigm change? , 2007, The journal of physical chemistry. B.

[6]  R. D. Levie,et al.  The influence of surface roughness of solid electrodes on electrochemical measurements , 1965 .

[7]  R. Atkin,et al.  Structure and dynamics of the interfacial layer between ionic liquids and electrode materials , 2014 .

[8]  A. Bondarenko,et al.  Potentiodynamic Electrochemical Impedance Spectroscopy , 2004 .

[9]  T. Pajkossy,et al.  Anion-adsorption-related frequency-dependent double layer capacitance of the platinum-group metals in the double layer region , 2008 .

[10]  E. Lust,et al.  Comparative in situ STM, cyclic voltammetry and impedance spectroscopy study of Bi(111) | 1-ethyl-3-methylimidazolium tetrafluoroborate interface , 2015 .

[11]  T. Pajkossy,et al.  The interface between Au(100) and 1-butyl-3-methyl-imidazolium-hexafluorophosphate. , 2011, Physical chemistry chemical physics : PCCP.

[12]  T. Jacob,et al.  The interface between HOPG and 1-butyl-3-methyl-imidazolium hexafluorophosphate. , 2016, Physical chemistry chemical physics : PCCP.

[13]  A. W. Hassel,et al.  Localised electrochemical impedance spectroscopy using a scanning droplet cell microscope , 2015 .

[14]  B. Braunschweig,et al.  Superstructures and order-disorder transition of sulfate adlayers on Pt(111) in sulfuric acid solution. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[15]  Application of the fast walsh-hadamard transform and the fast haar transform for electrochemical impedance measurements based on a periodic square-wave perturbation signal derived from walsh functions , 1987 .

[16]  T. Romann,et al.  Adsorption of 4,4′−bipyridine on the Cd(0001) single crystal electrode surface , 2015 .

[17]  T. Pajkossy,et al.  Impedance of rough capacitive electrodes , 1994 .

[18]  Jiawei Yan,et al.  The electrochemical interface of Ag(111) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid—A combined in-situ scanning probe microscopy and impedance study , 2016 .

[19]  W. Schuhmann,et al.  In Situ Characterization of Ultrathin Films by Scanning Electrochemical Impedance Microscopy. , 2016, Analytical chemistry.

[20]  Renata Costa,et al.  The electrical double layer at the ionic liquid/Au and Pt electrode interface , 2014 .

[21]  A. Levchenko,et al.  Kinetics of processes occurring at a H3PW12O40/Pt, H2 interface depending on the platinum content on the electrode , 2011 .

[22]  S. C. Creason,et al.  Fourier transform faradaic admittance measurements: I. Demonstration of the applicability of random and pseudo-random noise as applied potential signals , 1972 .

[23]  W. Schuhmann,et al.  Detection of 2D phase transitions at the electrode/electrolyte interface using electrochemical impedance spectroscopy , 2015 .

[24]  B. Roling,et al.  Influence of Electrode Roughness on Double Layer Formation in Ionic Liquids , 2015 .

[25]  M. Lohrengel,et al.  Capillary-based droplet cells: limits and new aspects , 2001 .

[26]  S. C. Creason,et al.  Fourier transform faradaic admittance measurements , 1972 .

[27]  Jianbo Zhang,et al.  Theory of Impedance Response of Porous Electrodes: Simplifications, Inhomogeneities, Non-Stationarities and Applications , 2016 .

[28]  L. Kavan,et al.  Electrochemical impedance spectroscopy of polycrystalline boron doped diamond layers with hydrogen and oxygen terminated surface , 2015 .

[29]  A. Bandarenka Exploring the interfaces between metal electrodes and aqueous electrolytes with electrochemical impedance spectroscopy. , 2013, The Analyst.

[30]  T. Pajkossy,et al.  On the origin of capacitance dispersion of rough electrodes , 2000 .

[31]  K. Cole,et al.  Dispersion and Absorption in Dielectrics II. Direct Current Characteristics , 1942 .

[32]  A. Hubin,et al.  ORP-EIS to study the time evolution of the [Fe(CN)6]3-/[Fe(CN)6]4- reaction due to adsorption at the electrochemical interface , 2015 .

[33]  S. Sunde,et al.  Current-distribution effects on the impedance of porous electrodes and electrodes covered with films , 2015 .

[34]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions—IV , 1963 .

[35]  D. Wheeler,et al.  Influence of Analysis Method on the Experimentally Observed Capacitance at the Gold-Ionic Liquid Interface , 2014 .

[36]  K. Darowicki,et al.  Study on surface termination of boron-doped diamond electrodes under anodic polarization in H2SO4 by means of dynamic impedance technique , 2016 .

[37]  Claude Gabrielli,et al.  Measurement of the electrode impedance in a wide frequency range using a pseudo-random noise☆ , 1975 .

[38]  M. Orazem,et al.  The impedance response of rotating disk electrodes , 2015 .