Operator-based Floquet theory in solid-state NMR.

This article reviews the application of operator-based Floquet theory in solid-state NMR. Basic expressions for calculating effective Hamiltonians based on van Vleck perturbation theory are reviewed for problems with a single frequency or multiple incommensurate frequencies. Such a treatment allows calculation of effective Hamiltonians for resonant and non-resonant problems. Examples from literature are given for single-mode to triple-mode Floquet problems, covering a wide range of applications in solid-state NMR under magic-angle spinning and radio-frequency irradiation of a single nucleus or multiple nuclei.

[1]  K. Mueller,et al.  Dynamic-Angle Spinning of Quadrupolar Nuclei , 1990 .

[2]  Andreas Brinkmann,et al.  Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids , 2000 .

[3]  R. Griffin,et al.  Multipole-multimode Floquet theory of rotational resonance width experiments: 13C-13C distance measurements in uniformly labeled solids. , 2006, The Journal of chemical physics.

[4]  B. Meier,et al.  Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through-bond connectivity , 1996 .

[5]  B. Meier,et al.  Simple and efficient decoupling in magic-angle spinning solid-state NMR: the XiX scheme , 2002 .

[6]  B. Meier,et al.  MIRROR-CP: A proton-only experiment for the measurement of 13C spin diffusion , 2009 .

[7]  Kiyonori Takegoshi,et al.  13C–1H dipolar-driven 13C–13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids , 2003 .

[8]  Michael Mehring,et al.  Principles of high-resolution NMR in solids , 1982 .

[9]  E. Olejniczak,et al.  Rotor frequency lines in the nuclear magnetic resonance spectra of rotating solids , 1984 .

[10]  B. Meier,et al.  Understanding two-pulse phase-modulated decoupling in solid-state NMR. , 2009, The Journal of chemical physics.

[11]  B. Meier,et al.  Distance information from proton-driven spin diffusion under MAS , 2006 .

[12]  M. Levitt,et al.  Pulse sequence symmetries in the nuclear magnetic resonance of spinning solids: Application to heteronuclear decoupling , 1999 .

[13]  Angelika Sebald,et al.  Dipolar recoupling under magic-angle spinning conditions , 2000 .

[14]  Robert G Griffin,et al.  Proton assisted recoupling at high spinning frequencies. , 2009, The journal of physical chemistry. B.

[15]  C. Rienstra,et al.  Fivefold symmetric homonuclear dipolar recoupling in rotating solids: Application to double quantum spectroscopy , 1999 .

[16]  R. Griffin,et al.  Description of depolarization effects in double-quantum solid state nuclear magnetic resonance experiments using multipole-multimode Floquet theory. , 2006, The Journal of chemical physics.

[17]  M. Levitt,et al.  Frequency-switched pulse sequences: Homonuclear decoupling and dilute spin NMR in solids , 1989 .

[18]  Haeberlen Ulrich,et al.  High resolution NMR in solids : selective averaging , 1976 .

[19]  K. Schmidt-Rohr,et al.  Multidimensional Solid-State Nmr and Polymers , 1994 .

[20]  Alexander Pines,et al.  Proton‐enhanced NMR of dilute spins in solids , 1973 .

[21]  S. Blanes,et al.  The Magnus expansion and some of its applications , 2008, 0810.5488.

[22]  R. Griffin,et al.  Recoupling of Homo- and Heteronuclear Dipolar Interactions in Rotating Solids , 1994 .

[23]  M. Ernst Heteronuclear spin decoupling in solid-state NMR under magic-angle sample spinning. , 2003, Journal of magnetic resonance.

[24]  B. Meier,et al.  Low-power cross polarization in fast magic-angle spinning NMR experiments. , 2009 .

[25]  B. Meier,et al.  Operator-based triple-mode Floquet theory in solid-state NMR. , 2007, The Journal of chemical physics.

[26]  Andreas Brinkmann,et al.  Synchronous helical pulse sequences in magic-angle spinning nuclear magnetic resonance: Double quantum recoupling of multiple-spin systems , 2000 .

[27]  M. Krishnan,et al.  Effective Hamiltonians in Floquet theory of magic angle spinning using van Vleck transformation , 2001 .

[28]  R. Griffin,et al.  Proton assisted insensitive nuclei cross polarization. , 2007, Journal of the American Chemical Society.

[29]  J. Feeney,et al.  Simplified 13C spectral assignments using a graphical method to present 13C spectra recorded under conditions of proton off-resonance spin decoupling , 1972 .

[30]  B. Meier,et al.  Decoupling and recoupling using continuous-wave irradiation in magic-angle-spinning solid-state NMR: a unified description using bimodal Floquet theory. , 2005, The Journal of chemical physics.

[31]  D. Raleigh,et al.  Theory and simulations of homonuclear spin pair systems in rotating solids , 1990 .

[32]  E. R. Andrew,et al.  Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed , 1958, Nature.

[33]  B. Meier,et al.  MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning , 2008 .

[34]  Fernando Casas Sufficient conditions for the convergence of the Magnus expansion , 2007 .

[35]  U. Haeberlen,et al.  Coherent Averaging Effects in Magnetic Resonance , 1968 .

[36]  M. Ernst,et al.  Isotropic second‐order dipolar shifts in the rotating frame , 1996 .

[37]  R. Griffin,et al.  Enhanced double‐quantum nuclear magnetic resonance in spinning solids at rotational resonance , 1992 .

[38]  R. Griffin,et al.  Theory of heteronuclear decoupling in solid-state nuclear magnetic resonance using multipole-multimode Floquet theory. , 2005, The Journal of chemical physics.

[39]  S. Vega,et al.  Phase modulated Lee-Goldburg magic angle spinning proton nuclear magnetic resonance experiments in the solid state: A bimodal Floquet theoretical treatment , 2001 .

[40]  Andreas Brinkmann,et al.  Second order average Hamiltonian theory of symmetry-based pulse schemes in the nuclear magnetic resonance of rotating solids: application to triple-quantum dipolar recoupling. , 2004, The Journal of chemical physics.

[41]  S. Vega,et al.  The Floquet theory of nuclear magnetic resonance spectroscopy of single spins and dipolar coupled spin pairs in rotating solids , 1992 .

[42]  J. H. Van Vleck,et al.  The Dipolar Broadening of Magnetic Resonance Lines in Crystals , 1948 .

[43]  B. Meier,et al.  Protein structure determination from 13C spin-diffusion solid-state NMR spectroscopy. , 2008, Journal of the American Chemical Society.

[44]  J. Zwanziger,et al.  Theoretical aspects of higher‐order truncations in solid‐state nuclear magnetic resonance , 1992 .

[45]  B. Meier,et al.  Dipolar truncation in magic-angle spinning NMR recoupling experiments. , 2009, The Journal of chemical physics.

[46]  F. Dyson The Radiation Theories of Tomonaga, Schwinger, and Feynman , 1949 .

[47]  J. Waugh,et al.  Advances In Magnetic Resonance , 1974 .

[48]  M. Maricq Convergence of the Magnus expansion for time dependent two level systems , 1987 .

[49]  N. Nielsen,et al.  Double‐quantum homonuclear rotary resonance: Efficient dipolar recovery in magic‐angle spinning nuclear magnetic resonance , 1994 .

[50]  R. Griffin,et al.  Multipole-multimode Floquet theory in nuclear magnetic resonance. , 2005, The Journal of chemical physics.

[51]  R. Griffin,et al.  Frequency-Switched Lee—Goldburg Sequences in Solids , 1990 .

[52]  G. Brunklaus,et al.  R sequences for the scalar-coupling mediated homonuclear correlation spectroscopy under fast magic-angle spinning , 2001 .

[53]  B. Meier,et al.  Fast-MAS total through-bond correlation spectroscopy using adiabatic pulses. , 2003, Journal of magnetic resonance.

[54]  B. Meier,et al.  Amplitude-modulated decoupling in rotating solids: a bimodal Floquet approach. , 2006, Solid state nuclear magnetic resonance.

[55]  D. Raleigh,et al.  Rotational resonance in solid state NMR , 1988 .

[56]  G. Bodenhausen,et al.  Broadband carbon-13 correlation spectra of microcrystalline proteins in very high magnetic fields. , 2009, Journal of the American Chemical Society.

[57]  S. Vega,et al.  The Transition Amplitudes of Centerband and Sidebands in NMR Spectra of Rotating Solids , 1992 .

[58]  H. Geen,et al.  Improved scalar shift correlation NMR spectroscopy in solids , 2001 .

[59]  G. Bodenhausen,et al.  Improved magnetization transfer in solid-state NMR with fast magic angle spinning , 2009 .

[60]  B. Meier,et al.  Rotor-driven spin diffusion in natural-abundance 13C spin systems☆ , 1988 .

[61]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[62]  E. R. Andrew,et al.  Removal of Dipolar Broadening of Nuclear Magnetic Resonance Spectra of Solids by Specimen Rotation , 1959, Nature.

[63]  Y. Zur,et al.  Multiphoton NMR spectroscopy on a spin system with I=1/2 , 1983 .

[64]  H. Primas GENERALIZED PERTURBATION THEORY IN OPERATOR FORM , 1963 .

[65]  B. Meier,et al.  Fast MAS total through-bond correlation spectroscopy. , 2001, Journal of magnetic resonance.

[66]  John D. Roberts,et al.  Nuclear Magnetic Resonance Spectroscopy. Carbon-13 Spectra of Steroids , 1969 .

[67]  Jon H. Shirley,et al.  Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time , 1965 .

[68]  M. Ernst,et al.  Insights into homonuclear decoupling from efficient numerical simulation: techniques and examples. , 2008, Journal of magnetic resonance.

[69]  T. Oas,et al.  Rotary Resonance Recoupling in Heteronuclear Spin Pair Systems , 1988 .

[70]  I. Heinmaa,et al.  New horizons for magic-angle spinning NMR. , 2005, Topics in current chemistry.

[71]  I. Lowe,et al.  Free Induction Decays of Rotating Solids , 1959 .

[72]  B. Meier,et al.  Probing through-bond connectivities and through-space distances in solids by magic-angle-spinning nuclear magnetic resonance , 1997 .

[73]  Andrew E. Bennett,et al.  Heteronuclear decoupling in rotating solids , 1995 .

[74]  C. Slichter Principles of magnetic resonance , 1963 .

[75]  S. Vega,et al.  High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee–Goldburg experiment , 1999 .

[76]  B. Meier,et al.  NMR polarization transfer by second-order resonant recoupling: RESORT , 2010 .

[77]  Kiyonori Takegoshi,et al.  13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR , 2001 .

[78]  D. Canet,et al.  Effect of Proton Spin Exchange on the Residual 13C MAS NMR Linewidths. Phase-Modulated Irradiation for Efficient Heteronuclear Decoupling in Rapidly Rotating Solids , 1994 .

[79]  S. Vega,et al.  A bimodal Floquet analysis of phase modulated Lee-Goldburg high resolution proton magic angle spinning NMR experiments , 2000 .

[80]  M. Leskes,et al.  Bimodal Floquet description of heteronuclear dipolar decoupling in solid-state nuclear magnetic resonance. , 2007, The Journal of chemical physics.

[81]  R. Griffin,et al.  Proton assisted recoupling and protein structure determination. , 2008, The Journal of chemical physics.

[82]  T. Oas,et al.  Rotary resonance recoupling of dipolar interactions in solid‐state nuclear magnetic resonance spectroscopy , 1988 .

[83]  É. Lippmaa,et al.  High resolution solid-state N.M.R. , 1988 .

[84]  C. Rienstra,et al.  Band-selective homonuclear dipolar recoupling in rotating solids , 2002 .

[85]  Richard R. Ernst,et al.  Formalized quantum mechanical Floquet theory and its application to sample spinning in nuclear magnetic resonance , 1995 .

[86]  Y. Mou,et al.  Efficient spin-spin scalar coupling mediated C-13 homonuclear polarization transfer in biological solids without proton decoupling. , 2006, Solid state nuclear magnetic resonance.