A Neuro-Genetic Framework for Pattern Recognition in Complex Systems

This paper presents a general framework to automatically generate rules that produce given spatial patterns in complex systems. The proposed framework integrates Genetic Algorithms with Artificial Neural Networks or Support Vector Machines. Here, it is tested on a well known 3-values, 6-neighbors, k-totalistic cellular automata rule called the "burning paper" rule. Results are encouraging and should pave the way for the use of the proposed framework in real-life complex systems models.

[1]  Alvy Ray Smith,et al.  Real-Time Language Recognition by One-Dimensional Cellular Automata , 1972, J. Comput. Syst. Sci..

[2]  Raghu Raghavan,et al.  Cellular automata in pattern recognition , 1993, Inf. Sci..

[3]  M Sipper,et al.  The evolution of parallel cellular machines: toward evolware. , 1997, Bio Systems.

[4]  Sébastien Vérel,et al.  Fitness landscape of the cellular automata majority problem: View from the "Olympus" , 2007, Theor. Comput. Sci..

[5]  Stefania Bandini,et al.  Emergent Spatial Patterns in Vegetable Population Dynamics: Towards Pattern Detection and Interpretation , 2006, International Conference on Computational Science.

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[8]  Christos Orovas,et al.  Cellular Associative Neural Networks for Pattern Recognition , 1999 .

[9]  Land,et al.  No perfect two-state cellular automata for density classification exists. , 1995, Physical review letters.

[10]  A. Wuensche Classifying cellular automata automatically: finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter , 1999 .

[11]  F. H. Bennett,et al.  Discovery by genetic programming of a cellular automata rule that is better than any known rule for the majority classification problem , 1996 .

[12]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[13]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[14]  M. L. Brady,et al.  Probabilistic cellular automata in pattern recognition , 1989, International 1989 Joint Conference on Neural Networks.

[15]  James P. Crutchfield,et al.  Evolving Globally Synchronized Cellular Automata , 1995, ICGA.

[16]  Phil Husbands,et al.  Self-reproduction by glider collisions: the beehive rule , 2004 .

[17]  W. Hordijk Correlation analysis of the synchronizing-CA landscape , 1997 .

[18]  Andrew Adamatzky,et al.  On Spiral Glider-Guns In Hexagonal Cellular Automata: Activator-Inhibitor Paradigm , 2006 .

[19]  Marco Tomassini,et al.  Evolving Asynchronous and Scalable Non-uniform Cellular Automata , 1997, ICANNGA.

[20]  Stefania Bandini,et al.  Automatic Detection of Go-Based Patterns in CA Model of Vegetable Populations: Experiments on Geta Pattern Recognition , 2006, ACRI.

[21]  V. Vapnik Estimation of Dependences Based on Empirical Data , 2006 .

[22]  Oscar H. Ibarra,et al.  Fast Parallel Language Recognition by Cellular Automata , 1985, Theor. Comput. Sci..

[23]  Biplab K. Sikdar,et al.  Evolving Cellular Automata as Pattern Classifier , 2002, ACRI.

[24]  M. Sipper Co-evolving non-uniform cellular automata to perform computations , 1996 .

[25]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems , 1999, Encyclopedia of Complexity and Systems Science.

[26]  Eleonora Bilotta,et al.  Searching for complex CA rules with GAs , 2003, Complex..

[27]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[28]  Ian Witten,et al.  Data Mining , 2000 .

[29]  Thomas Bäck,et al.  Using a genetic algorithm to evolve behavior in multi dimensional cellular automata: emergence of behavior , 2005, GECCO '05.

[30]  Melanie Mitchell,et al.  Evolving cellular automata to perform computations: mechanisms and impediments , 1994 .

[31]  Melanie Mitchell,et al.  Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work , 2000 .

[32]  James P. Crutchfield,et al.  Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations , 1993, Complex Syst..

[33]  Biplab K. Sikdar,et al.  Theory and Application of Cellular Automata For Pattern Classification , 2003, Fundam. Informaticae.

[34]  Panagiotis Tzionas,et al.  Cellular-automata-based learning network for pattern recognition , 1991, Other Conferences.

[35]  Pietro S. Pantano,et al.  Is self-replication an embedded characteristic of artificial/living matter? , 2002 .

[36]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[37]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[38]  Moshe Sipper,et al.  Evolution of Parallel Cellular Machines: The Cellular Programming Approach , 1997 .

[39]  Jordan B. Pollack,et al.  Coevolutionary Learning: A Case Study , 1998, ICML.

[40]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .