AbstractThe author considers Volterra Integral Equations of either of the two forms
$$u(x) = f(x) + \int\limits_a^x {k(x - t)g(u(t))dt, a \leqslant } x \leqslant b,$$
wheref, k, andg are continuous andg satisfies a local Lipschitz condition, or
$$u(x) = f(x) + \int\limits_a^x {\sum\limits_{j = 1}^m {c_j (x)g_j (t,u(t))dt} ,} $$
wheref,cj, andgj,j=1,2,...,m, are continuous and eachgj satisfies a local Lipschitz condition in its second variable. It is shown that in each case the respective integral equation can be solved by conversion to a system of ordinary differential equations which can be solved by referring to a described FORTRAN subroutine. Subroutine VE1.In the case of the convolution equation, it is shown how VE1 converts the equation via a Chebyshev expansion, and a theorem is proved, and implemented in VE1, wherein the solution error due to truncation of the expansion can be simultaneously computed at the discretion of the user. Some performance data are supplied and a comparison with other standard schemes is made. Detailed performance data and a program listing are available from the author.ZusammenfassungDer Verfasser betrachtet zwei Typen Volterrascher Integralgleichung; die erste besitzt die Form
$$u(x) = f(x) + \int\limits_a^x {k(x - t)g(u(t))dt, a \leqslant } x \leqslant b,$$
wobeif, k, undg stetig sind, undg eine lokale Lipschitz-Bedingung erfüllt; die zweite Gleichung ist
$$u(x) = f(x) + \int\limits_a^x {\sum\limits_{j = 1}^m {c_j (x)g_j (t,u(t))dt} ,} $$
wobeif,cj, undgj (j=1,...m) stetig sind und jede der Funktionengj eine lokale Lipschitz-Bedingung in den zweiten Argumenten erfüllt. Für beide Fälle wird gezeigt, daß die Integralgleichung durch Zurückführung auf ein System gewöhnlicher Differentialgleichungen gelöst werden kann, wobei letzteres mit einer beschriebenen FORTRAN Subroutine VE1 behandelt werden kann.
[1]
J. Bownds.
A modified Galerkin approximation method for volterra equations with smooth kernels
,
1978
.
[2]
John M. Bownds,et al.
On Numerically Solving Nonlinear Volterra Integral Equations with Fewer Computations
,
1976
.
[3]
Martin Avery Snyder.
Chebyshev methods in numerical approximation
,
1968
.
[4]
R. Kalaba,et al.
A CAUCHY SYSTEM FOR A CLASS OF NONLINEAR FREDHOLM INTEGRAL EQUATIONS
,
1973
.
[5]
J. Bownds,et al.
A note on solving Volterra integral equations with convolution kernels
,
1977
.
[6]
John M. Bownds,et al.
A smoothed projection method for singular, nonlinear Volterra equations
,
1979
.
[7]
Michael A. Malcolm,et al.
Computer methods for mathematical computations
,
1977
.
[8]
L. Shampine,et al.
Computer solution of ordinary differential equations : the initial value problem
,
1975
.
[9]
J. Bownds.
On an initial-value method for quickly solving Volterra integral equations: A review
,
1978
.
[10]
L. Garey,et al.
Solving Nonlinear Second Kind Volterra Equations by Modified Increment Methods
,
1975
.
[11]
John M. Bownds,et al.
On solving weakly singular Volterra equations of the first kind with Galerkin approximations
,
1976
.