Q-spaces and the Foundations of Quantum Mechanics

Our aim in this paper is to take quite seriously Heinz Post’s claim that the non-individuality and the indiscernibility of quantum objects should be introduced right at the start, and not made a posteriori by introducing symmetry conditions. Using a different mathematical framework, namely, quasi-set theory, we avoid working within a label-tensor-product-vector-space-formalism, to use Redhead and Teller’s words, and get a more intuitive way of dealing with the formalism of quantum mechanics, although the underlying logic should be modified. We build a vector space with inner product, the Q-space, using the non-classical part of quasi-set theory, to deal with indistinguishable elements. Vectors in Q-space refer only to occupation numbers and permutation operators act as the identity operator on them, reflecting in the formalism the fact of unobservability of permutations. Thus, this paper can be regarded as a tentative to follow and enlarge Heinsenberg’s suggestion that new phenomena require the formation of a new “closed” (that is, axiomatic) theory, coping also with the physical theory’s underlying logic and mathematics.

[1]  H. Weyl,et al.  Philosophy of Mathematics and Natural Science , 1950 .

[2]  Joan B. Quick,et al.  Philosophy of Mathematics and Natural Science , 1950 .

[3]  Erwin Schrödinger Science And Humanism , 1951 .

[4]  Patrick Suppes,et al.  Naive Set Theory , 1961 .

[5]  Baldwin Robertson Introduction to Field Operators in Quantum Mechanics , 1973 .

[6]  Yu. I. Manin,et al.  Course in mathematical logic , 1977, Graduate texts in mathematics.

[7]  John L. Bell,et al.  A course in mathematical logic , 1977 .

[8]  Philosophical Problems of Quantum Physics , 1979 .

[9]  Giuliano Toraldo di Francia,et al.  The Investigation of the Physical World , 1981 .

[10]  Dugald Murdoch,et al.  The Philosophical Writings , 1986 .

[11]  Michael Barr,et al.  The Emperor's New Mind , 1989 .

[12]  Paul Teller,et al.  Particles, particle labels, and quanta: The toll of unacknowledged metaphysics , 1991 .

[13]  Paul Teller,et al.  Particle Labels and the Theory of Indistinguishable Particles in Quantum Mechanics , 1992, The British Journal for the Philosophy of Science.

[14]  Décio Krause,et al.  On a Quasi-Set Theory , 1992, Notre Dame J. Formal Log..

[15]  Décio Krause,et al.  Schrödinger logics , 1994, Stud Logica.

[16]  G. D. Francia,et al.  IDENTITY QUESTIONS FROM QUANTUM THEORY , 1995 .

[17]  D J Toms An Interpretive Introduction to Quantum Field Theory , 1996 .

[18]  Newton C. A. da Costa,et al.  An Intensional Schrödinger Logic , 1997, Notre Dame J. Formal Log..

[19]  Peter Mittelstaedt The interpretation of quantum mechanics and the measurement process , 1997 .

[20]  Elena Castellani Interpreting bodies : classical and quantum objects in modern physics , 1998 .

[21]  Roberto Giuntini,et al.  Quasiset theories for microobjects: A comparison , 1998 .

[22]  L. Ballentine Quantum mechanics : a modern development , 1998 .

[23]  D. Krause,et al.  Quasi-set theory for bosons and fermions: Quantum distributions , 1999 .

[24]  S. Weinberg,et al.  What Is an Elementary Particle? , 1999 .

[25]  Hans Halvorson,et al.  Are Rindler Quanta Real? Inequivalent Particle Concepts in Quantum Field Theory , 2000, The British Journal for the Philosophy of Science.

[26]  Adonai S. Sant'Anna,et al.  A critical study on the concept of identity in Zermelo-Fraenkel-like axioms , 2001 .

[27]  Décio Krause Why quasi-sets? , 2003 .

[28]  Décio Krause,et al.  Quantum Vagueness , 2003 .

[29]  A. Sant'Anna Labels for Non-Individuals? , 2004, quant-ph/0408168.

[30]  A. Bokulich Heisenberg Meets Kuhn: Closed Theories and Paradigms* , 2006, Philosophy of Science.

[31]  S. French,et al.  Identity in Physics: A Historical, Philosophical, and Formal Analysis , 2006 .

[32]  Brigitte Falkenburg,et al.  Particle Metaphysics: A Critical Account of Subatomic Reality , 2007 .

[33]  F. Holik,et al.  A Discussion on Particle Number and Quantum Indistinguishability , 2007, 0705.3417.

[34]  Newton C. A. da Costa,et al.  Logical and Philosophical Remarks on Quasi-Set Theory , 2007, Log. J. IGPL.

[35]  D. Krause Why quasi-sets? - doi: 10.5269/bspm.v20i1-2.7524 , 2009 .