Smoothed Particle Magnetohydrodynamics – II. Variational principles and variable smoothing-length terms

In this paper we show how a Lagrangian variational principle can be used to derive the Smoothed Particle Magnetohydrodynamics (SPMHD) equations for ideal Magnetohydrodynamics (MHD). We also consider the effect of a variable smoothing length in the Smoothed Particle Hydrodynamics (SPH) kernels, after which we demonstrate by numerical tests that the consistent treatment of terms relating to the gradient of the smoothing length in the SPMHD equations significantly improves the accuracy of the algorithm. Our results complement those obtained in the companion paper for non-ideal MHD where artificial dissipative terms were included to handle shocks.

[1]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[2]  W. Benz Smooth Particle Hydrodynamics: A Review , 1990 .

[3]  J. Monaghan,et al.  A Switch to Reduce SPH Viscosity , 1997 .

[4]  G. J. Phillips,et al.  A numerical method for three-dimensional simulations of collapsing, isothermal, magnetic gas clouds , 1985 .

[5]  Michael L. Norman,et al.  A test suite for magnetohydrodynamical simulations , 1992 .

[6]  Daniel J. Price,et al.  Smoothed Particle Magnetohydrodynamics – I. Algorithm and tests in one dimension , 2003, astro-ph/0310789.

[7]  Dongsu Ryu,et al.  Numerical magetohydrodynamics in astronphysics: Algorithm and tests for one-dimensional flow` , 1995 .

[8]  Paul J. Dellar,et al.  A note on magnetic monopoles and the one-dimensional MHD Riemann problem , 2001 .

[9]  P. Janhunen,et al.  A Positive Conservative Method for Magnetohydrodynamics Based on HLL and Roe Methods , 2000 .

[10]  John H. Argyris,et al.  Computer Methods in Applied Mechanics and Engineering , 1990 .

[11]  Daniel J. Price,et al.  Variational principles for relativistic smoothed particle hydrodynamics , 2001 .

[12]  Volker Bromm,et al.  The formation of a star cluster: predicting the properties of stars and brown dwarfs , 2002, astro-ph/0212380.

[13]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[14]  W. Feldman,et al.  Magnetospheric phenomena in astrophysics , 1986 .

[15]  F. Henyey Canonical construction of a Hamiltonian for dissipation-free magnetohydrodynamics , 1982 .

[16]  J. Robert Buchler,et al.  The Numerical Modelling of Nonlinear Stellar Pulsations , 1990 .

[17]  Richard P. Nelson,et al.  Variable smoothing lengths and energy conservation in smoothed particle hydrodynamics , 1994 .

[18]  Physics Letters , 1962, Nature.

[19]  P. Oppeneer Variational principle for ideal MHD , 1984 .

[20]  J. Monaghan SPH compressible turbulence , 2002, astro-ph/0204118.

[21]  J. Bonet,et al.  Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations , 1999 .

[22]  Adaptative Smooth Particle Hydrodynamics and Particle-Particle coupled codes: Energy and Entropy Conservation , 1995, astro-ph/9511116.

[23]  Paul R. Woodward,et al.  On the Divergence-free Condition and Conservation Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows , 1998 .

[24]  Dinshaw S. Balsara,et al.  Total Variation Diminishing Scheme for Adiabatic and Isothermal Magnetohydrodynamics , 1998 .

[25]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[26]  Paul R. Woodward,et al.  Extension of the Piecewise Parabolic Method to Multidimensional Ideal Magnetohydrodynamics , 1994 .

[27]  J. Monaghan SPH without a Tensile Instability , 2000 .

[28]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .