Solving Scheduling Problems in Grid Resource Management Using an Evolutionary Algorithm

Evolutionary Algorithms (EA) are well suited for solving optimisation problems, especially NP-complete problems This paper presents the application of the Evolutionary Algorithm GLEAM (General Learning and Evolutionary Algorithm and Method) in the field of grid computing Here, grid resources like computing power, software, or storage have to be allocated to jobs that are running in heterogeneous computing environments The problem is similar to industrial resource scheduling, but has additional characteristics like co-scheduling and high dynamics within the resource pool and the set of requesting jobs The paper describes the deployment of GLEAM in the global optimising grid resource broker GORBA (Global Optimising Resource Broker and Allocator) and the first promising results in a grid simulation environment.

[1]  Rajkumar Buyya,et al.  A taxonomy and survey of grid resource management systems for distributed computing , 2002, Softw. Pract. Exp..

[2]  Andrei Tchernykh,et al.  Two Level Job-Scheduling Strategies for a Computational Grid , 2005, PPAM.

[3]  Jack J. Dongarra,et al.  Experiments with Scheduling Using Simulated Annealing in a Grid Environment , 2002, GRID.

[4]  David Abramson,et al.  Scheduling parameter sweep applications on global Grids: a deadline and budget constrained cost–time optimization algorithm , 2005, Softw. Pract. Exp..

[5]  Jarek Nabrzyski,et al.  Grid resource management: state of the art and future trends , 2004 .

[6]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[7]  Richard McClatchey,et al.  A Taxonomy and Survey of Grid Resource Planning and Reservation Systems for Grid Enabled Analysis Environment , 2004, ArXiv.

[8]  Andreas Hoheisel,et al.  An XML-Based Framework for Loosely Coupled Applications on Grid Environments , 2003, International Conference on Computational Science.

[9]  Marian Bubak,et al.  Advances in Grid Computing - EGC 2005, European Grid Conference, Amsterdam, The Netherlands, February 14-16, 2005, Revised Selected Papers , 2005, EGC.

[10]  Christian Blume,et al.  GLEAM - An Evolutionary Algorithm for Planning and Control Based on Evolution Strategy , 2002, GECCO Late Breaking Papers.

[11]  Christian Blume GLEAM - A System for Simulated 'Intuitive Learning' , 1990, PPSN.

[12]  Achim Streit,et al.  Scheduling in HPC Resource Management Systems: Queuing vs. Planning , 2003, JSSPP.

[13]  Wilfried Jakob HyGLEAM - An Approach to Generally Applicable Hybridization of Evolutionary Algorithms , 2002, PPSN.

[14]  Rajkumar Buyya,et al.  Nature's heuristics for scheduling jobs on Computational Grids , 2000 .

[15]  C. Blume,et al.  Deutliche Senkung der Produktionskosten durch Optimierung des Ressourceneinsatzes , 1994 .

[16]  Juan Julián Merelo Guervós,et al.  Parallel Problem Solving from Nature — PPSN VII , 2002, Lecture Notes in Computer Science.

[17]  Manuel Laguna,et al.  Tabu Search , 1997 .

[18]  Marco Mililotti,et al.  Sub optimal scheduling in a grid using genetic algorithms , 2004, Parallel Comput..

[19]  Gio Wiederhold,et al.  Scheduling under Uncertainty: Planning for the Ubiquitous Grid , 2002, COORDINATION.

[20]  Manish Parashar,et al.  Grid Computing — GRID 2002 , 2002, Lecture Notes in Computer Science.

[21]  Wilfried Jakob,et al.  Resource Brokering in Grid Environments using Evolutionary Algorithms , 2006, Parallel and Distributed Computing and Networks.

[22]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[23]  Alioune Ngom,et al.  Genetic algorithm based scheduler for computational grids , 2005, 19th International Symposium on High Performance Computing Systems and Applications (HPCS'05).

[24]  Hironori Kasahara,et al.  A standard task graph set for fair evaluation of multiprocessor scheduling algorithms , 2002 .

[25]  Shanshan Song,et al.  Security-driven heuristics and a fast genetic algorithm for trusted grid job scheduling , 2005, 19th IEEE International Parallel and Distributed Processing Symposium.

[26]  Wilfried Jakob,et al.  Optimised Scheduling of Grid Resources Using Hybrid Evolutionary Algorithms , 2005, PPAM.

[27]  Yang Gao,et al.  Adaptive grid job scheduling with genetic algorithms , 2005, Future Gener. Comput. Syst..

[28]  Jack Dongarra,et al.  Computational Science — ICCS 2003 , 2003, Lecture Notes in Computer Science.

[29]  Olaf Schneider,et al.  The CampusGrid Test Bed at Forschungszentrum Karlsruhe , 2005, EGC.

[30]  Farhad Arbab,et al.  Coordination Models and Languages , 1998, Adv. Comput..