Brain lesion segmentation through image synthesis and outlier detection

[1]  Ludovica Griffanti,et al.  BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities , 2016, NeuroImage.

[2]  Nico Karssemeijer,et al.  Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin , 2016, NeuroImage: Clinical.

[3]  Daniel Rueckert,et al.  Pseudo-healthy Image Synthesis for White Matter Lesion Segmentation , 2016, SASHIMI@MICCAI.

[4]  Sotirios A. Tsaftaris,et al.  Whole Image Synthesis Using a Deep Encoder-Decoder Network , 2016, SASHIMI@MICCAI.

[5]  Ling Shao,et al.  Geometry Regularized Joint Dictionary Learning for Cross-Modality Image Synthesis in Magnetic Resonance Imaging , 2016, SASHIMI@MICCAI.

[6]  Snehashis Roy,et al.  Patch Based Synthesis of Whole Head MR Images: Application To EPI Distortion Correction , 2016, SASHIMI@MICCAI.

[7]  J. Thiran,et al.  Basic MR sequence parameters systematically bias automated brain volume estimation , 2016, Neuroradiology.

[8]  Carole Lartizien,et al.  Detection of Lesions Underlying Intractable Epilepsy on T1-Weighted MRI as an Outlier Detection Problem , 2016, PloS one.

[9]  Konstantinos Kamnitsas,et al.  Efficient multi‐scale 3D CNN with fully connected CRF for accurate brain lesion segmentation , 2016, Medical Image Anal..

[10]  Shaohua Kevin Zhou,et al.  Unsupervised Cross-Modal Synthesis of Subject-Specific Scans , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[11]  J. Wardlaw,et al.  Rationale, design and methodology of the image analysis protocol for studies of patients with cerebral small vessel disease and mild stroke , 2015, Brain and behavior.

[12]  Liang Chen,et al.  Identification of Cerebral Small Vessel Disease Using Multiple Instance Learning , 2015, MICCAI.

[13]  Shaohua Kevin Zhou,et al.  Cross-Domain Synthesis of Medical Images Using Efficient Location-Sensitive Deep Network , 2015, MICCAI.

[14]  Daniel Rueckert,et al.  Brain Extraction Using Label Propagation and Group Agreement: Pincram , 2015, PloS one.

[15]  Amod Jog,et al.  Tree-Encoded Conditional Random Fields for Image Synthesis , 2015, IPMI.

[16]  Sébastien Ourselin,et al.  Template-Based Multimodal Joint Generative Model of Brain Data , 2015, IPMI.

[17]  Olivier Commowick,et al.  Probabilistic one class learning for automatic detection of multiple sclerosis lesions , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[18]  Jyrki Lötjönen,et al.  Robust whole-brain segmentation: Application to traumatic brain injury , 2015, Medical Image Anal..

[19]  Aaron Carass,et al.  Using image synthesis for multi-channel registration of different image modalities , 2015, Medical Imaging.

[20]  A. Cherubini,et al.  Automatic Detection of White Matter Hyperintensities in Healthy Aging and Pathology Using Magnetic Resonance Imaging: A Review , 2015, Neuroinformatics.

[21]  J. Wardlaw,et al.  Cerebral Perivascular Spaces Visible on Magnetic Resonance Imaging: Development of a Qualitative Rating Scale and its Observer Reliability , 2015, Cerebrovascular Diseases.

[22]  Antonio Criminisi,et al.  Image Quality Transfer via Random Forest Regression: Applications in Diffusion MRI , 2014, MICCAI.

[23]  Marc Niethammer,et al.  Multi-modal registration for correlative microscopy using image analogies , 2014, Medical Image Anal..

[24]  Snehashis Roy,et al.  MR to CT registration of brains using image synthesis , 2014, Medical Imaging.

[25]  Yu-Chiang Frank Wang,et al.  Coupled Dictionary and Feature Space Learning with Applications to Cross-Domain Image Synthesis and Recognition , 2013, 2013 IEEE International Conference on Computer Vision.

[26]  I. Deary,et al.  Towards the automatic computational assessment of enlarged perivascular spaces on brain magnetic resonance images: A systematic review , 2013, Journal of magnetic resonance imaging : JMRI.

[27]  Ninon Burgos,et al.  Attenuation Correction Synthesis for Hybrid PET-MR Scanners , 2013, MICCAI.

[28]  André J. W. van der Kouwe,et al.  Example-Based Restoration of High-Resolution Magnetic Resonance Image Acquisitions , 2013, MICCAI.

[29]  Marc Niethammer,et al.  Robust Multimodal Dictionary Learning , 2013, MICCAI.

[30]  Ben Glocker,et al.  Is Synthesizing MRI Contrast Useful for Inter-modality Analysis? , 2013, MICCAI.

[31]  Ben Glocker,et al.  Modality Propagation: Coherent Synthesis of Subject-Specific Scans with Data-Driven Regularization , 2013, MICCAI.

[32]  Snehashis Roy,et al.  Magnetic Resonance Image Example-Based Contrast Synthesis , 2013, IEEE Transactions on Medical Imaging.

[33]  Nick C Fox,et al.  Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration , 2013, The Lancet Neurology.

[34]  Snehashis Roy,et al.  Magnetic resonance image synthesis through patch regression , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[35]  Benjamin S Aribisala,et al.  Close Correlation between Quantitative and Qualitative Assessments of White Matter Lesions , 2012, Neuroepidemiology.

[36]  Alex Rovira,et al.  Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches , 2012, Inf. Sci..

[37]  Bernhard Hemmer,et al.  An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis , 2012, NeuroImage.

[38]  Max A. Viergever,et al.  Efficient detection of cerebral microbleeds on 7.0T MR images using the radial symmetry transform , 2012, NeuroImage.

[39]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[40]  H. Urbach,et al.  Automated quantitative FLAIR analysis in hippocampal sclerosis , 2011, Epilepsy Research.

[41]  Snehashis Roy,et al.  A Compressed Sensing Approach for MR Tissue Contrast Synthesis , 2011, IPMI.

[42]  Jeffrey A. Cohen,et al.  Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria , 2011, Annals of neurology.

[43]  Snehashis Roy,et al.  MR contrast synthesis for lesion segmentation , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[44]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[45]  Snehashis Roy,et al.  Synthesizing MR contrast and resolution through a patch matching technique , 2010, Medical Imaging.

[46]  Peter A. Calabresi,et al.  A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions , 2010, NeuroImage.

[47]  Cornelis H. Slump,et al.  MRI modalitiy transformation in demon registration , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[48]  Henri A. Vrooman,et al.  Progression of Cerebral Small Vessel Disease in Relation to Risk Factors and Cognitive Consequences: Rotterdam Scan Study , 2008, Stroke.

[49]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[50]  David Salesin,et al.  Image Analogies , 2001, SIGGRAPH.

[51]  James S. Duncan,et al.  Medical Image Analysis , 1999, IEEE Pulse.

[52]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[53]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Joseph V. Hajnal,et al.  Use of Fluid Attenuated Inversion Recovery (FLAIR) Pulse Sequences in MRI of the Brain , 1992, Journal of computer assisted tomography.

[55]  A. Alavi,et al.  MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. , 1987, AJR. American journal of roentgenology.

[56]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.

[57]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[58]  Snehashis Roy,et al.  Random forest regression for magnetic resonance image synthesis , 2017, Medical Image Anal..

[59]  Hideaki Kawano,et al.  Pseudo-normal Image Synthesis from Chest Radiograph Database for Lung Nodule Detection , 2014, Advanced Intelligent Systems.

[60]  Norberto Malpica,et al.  Single-image super-resolution of brain MR images using overcomplete dictionaries , 2013, Medical Image Anal..

[61]  D. Louis Collins,et al.  Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging , 2013, Medical Image Anal..

[62]  A. Arora Single Image Super-Resolution , 2011 .

[63]  P. A. Armitage,et al.  Development and initial testing of normal reference MR images for the brain at ages 65–70 and 75–80 years , 2008, European Radiology.

[64]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[65]  K. McGraw,et al.  Forming inferences about some intraclass correlation coefficients. , 1996 .

[66]  Normal ageing. , 1987, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[67]  D. Shen,et al.  Hierarchical Patch-based Sparse Representation—a New Approach for Resolution Enhancement of 4d-ct Lung Data , 2022 .