A method to generate kappa distributed random deviates for particle-in-cell simulations

Abstract The kappa distribution has been increasingly recognised as a versatile tool for the study and understanding of space plasmas. With its Maxwellian-like core and power-law tail it smoothly reproduces the velocity distribution of charged particles observed in space plasmas. Presented here is a simple and efficient method to generate pseudo-random deviates following the kappa distribution. This is presented within the context of modelling the initial particle velocity distributions in particle-in-cell (PIC) simulations. The Mathematical equivalence between the kappa distribution and the Student t distribution is demonstrated. Using this equivalence, the well-known method of generating deviates for the Student t distribution is tailored for the kappa distribution.

[1]  Can Huang,et al.  Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions , 1989 .

[2]  G. Gloeckler,et al.  AMPTE Ion Composition Results , 1987 .

[3]  A. Collier,et al.  A simulation approach of high-frequency electrostatic waves found in Saturn’s magnetosphere , 2012 .

[4]  R. Bailey Polar generation of random variates with the t -distribution , 1994 .

[5]  P. Riley,et al.  Ulysses electron distributions fitted with Kappa functions , 1997 .

[6]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[7]  William T. Shaw,et al.  Bivariate Student t distributions with variable marginal degrees of freedom and independence , 2008 .

[8]  J. Dawson Particle simulation of plasmas , 1983 .

[9]  J. F. Mckenzie,et al.  The solar wind ion composition spectrometer , 1992 .

[10]  Q. Lu,et al.  Velocity distributions of superthermal electrons fitted with a power law function in the magnetosheath: Cluster observations , 2011 .

[11]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[12]  Richard M. Thorne,et al.  The modified plasma dispersion function , 1991 .

[13]  R. Treumann,et al.  Stationary plasma states far from equilibrium , 2004 .

[14]  E. Parker,et al.  SUPRATHERMAL PARTICLES. II. , 1958 .

[15]  George Livadiotis,et al.  Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas , 2009 .

[16]  E. Blackman,et al.  PARTICLE-IN-CELL SIMULATIONS OF PARTICLE ENERGIZATION VIA SHOCK DRIFT ACCELERATION FROM LOW MACH NUMBER QUASI-PERPENDICULAR SHOCKS IN SOLAR FLARES , 2012, 1210.5654.

[17]  Toshiki Tajima,et al.  Computational Plasma Physics: With Applications To Fusion And Astrophysics , 2019 .

[18]  Z. Vörös,et al.  Creating kappa-like distributions from a Galton board , 2011 .

[19]  Hasegawa,et al.  Plasma distribution function in a superthermal radiation field. , 1985, Physical review letters.

[20]  M. Lazar,et al.  Kappa Distributions: Theory and Applications in Space Plasmas , 2010, 1003.3532.

[21]  M. Collier On generating Kappa‐like distribution functions using velocity space Lévy flights , 1993 .

[22]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[23]  M. Leubner Fundamental issues on kappa-distributions in space plasmas , 2003 .

[24]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[25]  V. Vasyliūnas,et al.  A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. , 1968 .

[26]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[27]  A Nonextensive Entropy Approach to Kappa-Distributions , 2001, astro-ph/0111444.

[28]  I. Dandouras,et al.  Multi-instrument analysis of electron populations in Saturn's magnetosphere , 2008 .

[29]  Q. Lu,et al.  Particle‐in‐cell simulations of whistler waves excited by an electron κ distribution in space plasma , 2010 .

[30]  T. Eastman,et al.  Energy spectra of plasma sheet ions and electrons from ∼50 eV/e to ∼1 MeV during plasma temperature transitions , 1988 .

[31]  L. Drury,et al.  An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas , 1983 .