Transport mechanisms in nanopores and nanochannels: Can we mimic nature?

[1]  Shizhi Qian,et al.  pH-regulated ionic conductance in a nanopore , 2014 .

[2]  Eric Bakker,et al.  Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. , 2014, Nature chemistry.

[3]  C. Dekker,et al.  Ionic permeability and mechanical properties of DNA origami nanoplates on solid-state nanopores. , 2014, ACS nano.

[4]  B. Corry,et al.  Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na(+) and K(+). , 2013, ACS nano.

[5]  James L. Hickey,et al.  Diagnostic imaging agents for Alzheimer's disease: copper radiopharmaceuticals that target Aβ plaques. , 2013, Journal of the American Chemical Society.

[6]  I. Szleifer,et al.  Transport rectification in nanopores with outer membranes modified with surface charges and polyelectrolytes. , 2013, ACS nano.

[7]  Mubarak Ali,et al.  Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels , 2013 .

[8]  Daniel H Stoloff,et al.  Recent trends in nanopores for biotechnology. , 2013, Current opinion in biotechnology.

[9]  Shizhi Qian,et al.  Ion transport in a pH-regulated nanopore. , 2013, Analytical chemistry.

[10]  V. Gómez,et al.  Net currents obtained from zero-average potentials in single amphoteric nanopores , 2013 .

[11]  Wei Guo,et al.  Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. , 2013, Accounts of chemical research.

[12]  I. Szleifer,et al.  Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex , 2013, Proceedings of the National Academy of Sciences.

[13]  Mubarak Ali,et al.  Calcium binding and ionic conduction in single conical nanopores with polyacid chains: model and experiments. , 2012, ACS nano.

[14]  I. Szleifer,et al.  Stimuli-responsive polymers grafted to nanopores and other nano-curved surfaces: structure, chemical equilibrium and transport , 2012 .

[15]  Xu Hou,et al.  Building bio-inspired artificial functional nanochannels: from symmetric to asymmetric modification. , 2012, Angewandte Chemie.

[16]  Shizhi Qian,et al.  Ion Concentration Polarization in Polyelectrolyte-Modified Nanopores , 2012 .

[17]  Mubarak Ali,et al.  Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: experimental and theoretical characterization. , 2012, ACS nano.

[18]  Ruoshan Wei,et al.  Stochastic sensing of proteins with receptor-modified solid-state nanopores. , 2012, Nature nanotechnology.

[19]  M. Taniguchi,et al.  Single-nanoparticle detection using a low-aspect-ratio pore. , 2012, ACS nano.

[20]  Basit Yameen,et al.  Proton and calcium-gated ionic mesochannels: phosphate-bearing polymer brushes hosted in mesoporous thin films as biomimetic interfacial architectures. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[21]  J. Fernandez-Martinez,et al.  A jumbo problem: mapping the structure and functions of the nuclear pore complex. , 2012, Current opinion in cell biology.

[22]  Wen-Jie Lan,et al.  Diffusional motion of a particle translocating through a nanopore. , 2012, ACS nano.

[23]  C. Dekker,et al.  Biomimetic nanopores: learning from and about nature. , 2011, Trends in biotechnology.

[24]  I. Szleifer,et al.  Ion transport and molecular organization are coupled in polyelectrolyte-modified nanopores. , 2011, Journal of the American Chemical Society.

[25]  W. Tremel,et al.  Metal ion affinity-based biomolecular recognition and conjugation inside synthetic polymer nanopores modified with iron-terpyridine complexes. , 2011, Journal of the American Chemical Society.

[26]  C. Dekker,et al.  Single-molecule transport across an individual biomimetic nuclear pore complex. , 2011, Nature nanotechnology.

[27]  I. Szleifer,et al.  Morphology control of hairy nanopores. , 2011, ACS nano.

[28]  Javier Cervera,et al.  Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications , 2011 .

[29]  Sheereen Majd,et al.  Controlling the translocation of proteins through nanopores with bioinspired fluid walls , 2011, Nature nanotechnology.

[30]  Reinhard Neumann,et al.  Sequence-specific recognition of DNA oligomer using peptide nucleic acid (PNA)-modified synthetic ion channels: PNA/DNA hybridization in nanoconfined environment. , 2010, ACS nano.

[31]  Jin Zhai,et al.  Bio‐inspired Photoelectric Conversion Based on Smart‐Gating Nanochannels , 2010 .

[32]  Omar Azzaroni,et al.  Responsive polymers end-tethered in solid-state nanochannels: when nanoconfinement really matters. , 2010, Journal of the American Chemical Society.

[33]  Roderick Y. H. Lim,et al.  Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex , 2010, Biological chemistry.

[34]  D. Branton,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[35]  Xu Hou,et al.  Current rectification in temperature-responsive single nanopores. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[36]  I. Szleifer,et al.  Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions , 2010, Proceedings of the National Academy of Sciences.

[37]  Z. Siwy,et al.  Engineered voltage-responsive nanopores. , 2010, Chemical Society reviews.

[38]  X. Gong,et al.  A controllable molecular sieve for Na+ and K+ ions. , 2010, Journal of the American Chemical Society.

[39]  Xu Hou,et al.  Learning from nature: building bio-inspired smart nanochannels. , 2009, ACS nano.

[40]  Reinhard Neumann,et al.  Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. , 2009, Nano letters.

[41]  R. Neumann,et al.  Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. , 2009, Small.

[42]  David C. Gadsby,et al.  Ion channels versus ion pumps: the principal difference, in principle , 2009, Nature Reviews Molecular Cell Biology.

[43]  B. Chait,et al.  Artificial nanopores that mimic the transport selectivity of the nuclear pore complex , 2009, Nature.

[44]  Boyang Wang,et al.  Selective ion passage through functionalized graphene nanopores. , 2008, Journal of the American Chemical Society.

[45]  Reinhard Neumann,et al.  Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. , 2008, Journal of the American Chemical Society.

[46]  Z. Siwy,et al.  Nanofluidic ionic diodes. Comparison of analytical and numerical solutions. , 2008, ACS nano.

[47]  P. Renaud,et al.  Transport phenomena in nanofluidics , 2008 .

[48]  Zuzanna Siwy,et al.  Ionic selectivity of single nanochannels. , 2008, Nano letters.

[49]  Eric Gouaux,et al.  Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. , 2007, Nature.

[50]  Zuzanna S Siwy,et al.  Learning Nature's Way: Biosensing with Synthetic Nanopores , 2007, Science.

[51]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[52]  Rashid Bashir,et al.  Solid-state nanopore channels with DNA selectivity. , 2007, Nature nanotechnology.

[53]  Henry S White,et al.  Photon gated transport at the glass nanopore electrode. , 2006, Journal of the American Chemical Society.

[54]  Z. Siwy,et al.  Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry , 2006 .

[55]  I. Arkin,et al.  How pH opens a H+ channel: the gating mechanism of influenza A M2. , 2005, Structure.

[56]  Katsuhiro Shirono,et al.  Nanofluidic diode and bipolar transistor. , 2005, Nano letters.

[57]  B. Schiedt,et al.  A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores , 2005 .

[58]  Z. Siwy,et al.  Asymmetric diffusion through synthetic nanopores. , 2005, Physical review letters.

[59]  A. Schousboe,et al.  Charge selectivity of the Cys‐loop family of ligand‐gated ion channels , 2005, Journal of neurochemistry.

[60]  Zuzanna Siwy,et al.  DNA-nanotube artificial ion channels. , 2004, Journal of the American Chemical Society.

[61]  A. Majumdar,et al.  Electrochemomechanical Energy Conversion in Nanofluidic Channels , 2004 .

[62]  Peter R Schofield,et al.  Ligand-gated ion channels: mechanisms underlying ion selectivity. , 2004, Progress in biophysics and molecular biology.

[63]  H. Flyvbjerg,et al.  Comment on "Fabrication of a synthetic nanopore ion pump". , 2003, Physical review letters.

[64]  M. Cadene,et al.  X-ray structure of a voltage-dependent K+ channel , 2003, Nature.

[65]  A. Harel,et al.  Welcome to the nucleus: CAN I take your coat? , 2001, Nature Cell Biology.

[66]  P. Reimann Brownian motors: noisy transport far from equilibrium , 2000, cond-mat/0010237.

[67]  Charles R. Martin,et al.  Resistive-Pulse SensingFrom Microbes to Molecules , 2000 .

[68]  Shin-Ho Chung,et al.  Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics. , 2000, Biophysical journal.

[69]  Serdar Kuyucak,et al.  Invalidity of continuum theories of electrolytes in nanopores , 2000 .

[70]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[71]  L. Salkoff,et al.  Slo3, a Novel pH-sensitive K+ Channel from Mammalian Spermatocytes* , 1998, The Journal of Biological Chemistry.

[72]  Anatoli N. Lopatin,et al.  Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification , 1994, Nature.

[73]  D. Khananshvili Sodium-calcium exchangers (NCX): molecular hallmarks underlying the tissue-specific and systemic functions , 2013, Pflügers Archiv - European Journal of Physiology.

[74]  Shin-Ho Chung,et al.  Biological membrane ion channels : dynamics, structure, and applications , 2006 .

[75]  Zhe Lu,et al.  Mechanism of rectification in inward-rectifier K+ channels. , 2004, Annual review of physiology.

[76]  Hirofumi Daiguji,et al.  Ion transport in nanofluidic channels , 2004 .