Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires

Magnetic skyrmions are topologically stable whirlpool-like spin textures that offer great promise as information carriers for future spintronic devices. To enable such applications, particular attention has been focused on the properties of skyrmions in highly confined geometries such as one-dimensional nanowires. Hitherto, it is still experimentally unclear what happens when the width of the nanowire is comparable to that of a single skyrmion. Here, we achieve this by measuring the magnetoresistance in ultra-narrow MnSi nanowires. We observe quantized jumps in magnetoresistance versus magnetic field curves. By tracking the size dependence of the jump number, we infer that skyrmions are assembled into cluster states with a tunable number of skyrmions, in agreement with the Monte Carlo simulations. Our results enable an electric reading of the number of skyrmions in the cluster states, thus laying a solid foundation to realize skyrmion-based memory devices.

[1]  T. Sakakibara,et al.  Magnetization and Magnetoresistance of MnSi. II , 1982 .

[2]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[3]  A. Saxena,et al.  Manipulation of skyrmions in nanodisks with a current pulse and skyrmion rectifier , 2013, 1304.0040.

[4]  Y. Tokura,et al.  Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.

[5]  T. Wolf,et al.  Large enhancement of emergent magnetic fields in MnSi with impurities and pressure , 2013, 1401.3680.

[6]  M. Mostovoy,et al.  Target-skyrmions and skyrmion clusters in nanowires of chiral magnets , 2013, 1311.6283.

[7]  U. Rößler,et al.  Chiral modulations and reorientation effects in MnSi thin films , 2012 .

[8]  A. N. Bogdanov,et al.  Surface twist instabilities and skyrmion states in chiral ferromagnets , 2014, 1405.5275.

[9]  U. Rößler,et al.  Chiral Skyrmionic matter in non-centrosymmetric magnets , 2010, 1009.4849.

[10]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[11]  C. Pfleiderer,et al.  Unwinding of a Skyrmion Lattice by Magnetic Monopoles , 2013, Science.

[12]  Y. Tokura,et al.  Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling. , 2013, Nature nanotechnology.

[13]  M. Mochizuki,et al.  Current-induced skyrmion dynamics in constricted geometries. , 2013, Nature nanotechnology.

[14]  F. Mena,et al.  Heavy carriers and non-Drude optical conductivity in MnSi , 2003, cond-mat/0302608.

[15]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[16]  E. Karhu,et al.  Discrete helicoidal states in chiral magnetic thin films , 2013, 1305.5196.

[17]  Song Jin,et al.  Epitaxially-hyperbranched FeSi nanowires exhibiting merohedral twinning , 2010 .

[18]  S. Yi,et al.  Skyrmions and anomalous Hall effect in a Dzyaloshinskii-Moriya spiral magnet , 2009, 0903.3272.

[19]  U. Rößler,et al.  Extended elliptic skyrmion gratings in epitaxial MnSi thin films , 2012, 1210.1440.

[20]  U. Rößler,et al.  Chiral symmetry breaking in magnetic thin films and multilayers. , 2001, Physical review letters.

[21]  P. Böni,et al.  Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.

[22]  Y. Tokura,et al.  Observation of the magnetic skyrmion lattice in a MnSi nanowire by Lorentz TEM. , 2013, Nano letters.

[23]  Ruihua Ding,et al.  Signature of helimagnetic ordering in single-crystal MnSi nanowires. , 2010, Nano letters.

[24]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[25]  M. Mochizuki,et al.  Universal current-velocity relation of skyrmion motion in chiral magnets , 2013, Nature Communications.

[26]  J. Zang,et al.  Transport theory of metallic B 20 helimagnets , 2014, 1412.7177.

[27]  H. Du,et al.  Field-driven evolution of chiral spin textures in a thin helimagnet nanodisk , 2013 .

[28]  A. S. Ovchinnikov,et al.  Interlayer magnetoresistance due to chiral soliton lattice formation in hexagonal chiral magnet CrNb3S6. , 2013, Physical review letters.

[29]  Wei Ning,et al.  Highly stable skyrmion state in helimagnetic MnSi nanowires. , 2014, Nano letters.

[30]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.