Frequent subgraph mining in outerplanar graphs

In recent years there has been an increased interest in algorithms that can perform frequent pattern discovery in large databases of graph structured objects. While the frequent connected subgraph mining problem for tree datasets can be solved in incremental polynomial time, it becomes intractable for arbitrary graph databases. Existing approaches have therefore resorted to various heuristic strategies and restrictions of the search space, but have not identified a practically relevant tractable graph class beyond trees. In this paper, we define the class of so called tenuous outerplanar graphs, a strict generalization of trees, develop a frequent subgraph mining algorithm for tenuous outerplanar graphs that works in incremental polynomial time, and evaluate the algorithm empirically on the NCI molecular graph dataset.

[1]  F. Harary,et al.  Planar Permutation Graphs , 1967 .

[2]  Frank Harary,et al.  Graph Theory , 2016 .

[3]  G. Chartrand,et al.  Graphs with Forbidden Subgraphs , 1971 .

[4]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[5]  John E. Hopcroft,et al.  Linear time algorithm for isomorphism of planar graphs (Preliminary Report) , 1974, STOC '74.

[6]  Robert E. Tarjan,et al.  Bounds on Backtrack Algorithms for Listing Cycles, Paths, and Spanning Trees , 1975, Networks.

[7]  D. Matula Subtree Isomorphism in O(n5/2) , 1978 .

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  S. Mitchell Linear algorithms to recognize outerplanar and maximal outerplanar graphs , 1979 .

[10]  W. L. G. Koontz Economic evaluation of loop feeder relief alternatives , 1980, The Bell System Technical Journal.

[11]  Maciej M. SysŁ The subgraph isomorphism problem for outerplanar graphs , 1982 .

[12]  L. Chua,et al.  Uniqueness of solution for nonlinear resistive circuits containing CCCS's or VCVS's whose controlling coefficients are finite , 1986 .

[13]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[14]  Andrzej Lingas Subgraph Isomorphism for Biconnected Outerplanar Graphs in Cubic Time , 1989, Theor. Comput. Sci..

[15]  Lawrence B. Holder,et al.  Substructure Discovery Using Minimum Description Length and Background Knowledge , 1993, J. Artif. Intell. Res..

[16]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[17]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[18]  Pavol Hell,et al.  List Homomorphisms to Reflexive Graphs , 1998, J. Comb. Theory, Ser. B.

[19]  Peter F. Stadler,et al.  Minimal Cycle Bases of Outerplanar Graphs , 1998, Electron. J. Comb..

[20]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[21]  Ron Shamir,et al.  Faster Subtree Isomorphism , 1999, J. Algorithms.

[22]  George Karypis,et al.  Frequent subgraph discovery , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[23]  Luc De Raedt,et al.  Molecular feature mining in HIV data , 2001, KDD '01.

[24]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[25]  Christian Borgelt,et al.  Mining molecular fragments: finding relevant substructures of molecules , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[26]  Joost N. Kok,et al.  A quickstart in frequent structure mining can make a difference , 2004, KDD.

[27]  Yun Chi,et al.  Canonical forms for labelled trees and their applications in frequent subtree mining , 2005, Knowledge and Information Systems.

[28]  Heikki Mannila,et al.  Levelwise Search and Borders of Theories in Knowledge Discovery , 1997, Data Mining and Knowledge Discovery.

[29]  Stefan Wrobel,et al.  Relational Instance-Based Learning with Lists and Terms , 2001, Machine Learning.

[30]  Takashi Washio,et al.  Complete Mining of Frequent Patterns from Graphs: Mining Graph Data , 2003, Machine Learning.

[31]  Yun Chi,et al.  Frequent Subtree Mining - An Overview , 2004, Fundam. Informaticae.

[32]  Tamás Horváth,et al.  Cyclic Pattern Kernels Revisited , 2005, PAKDD.

[33]  George Karypis,et al.  Frequent Substructure-Based Approaches for Classifying Chemical Compounds , 2005, IEEE Trans. Knowl. Data Eng..

[34]  Luc De Raedt,et al.  Frequent Hypergraph Mining , 2006, ILP.

[35]  Christos Faloutsos,et al.  Fast best-effort pattern matching in large attributed graphs , 2007, KDD '07.

[36]  Ambuj K. Singh,et al.  Efficient Algorithms for Mining Significant Substructures in Graphs with Quality Guarantees , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).