Spatiotemporal Dynamics Underlying Object Completion in Human Ventral Visual Cortex

Natural vision often involves recognizing objects from partial information. Recognition of objects from parts presents a significant challenge for theories of vision because it requires spatial integration and extrapolation from prior knowledge. Here we recorded intracranial field potentials of 113 visually selective electrodes from epilepsy patients in response to whole and partial objects. Responses along the ventral visual stream, particularly the inferior occipital and fusiform gyri, remained selective despite showing only 9%-25% of the object areas. However, these visually selective signals emerged ∼100 ms later for partial versus whole objects. These processing delays were particularly pronounced in higher visual areas within the ventral stream. This latency difference persisted when controlling for changes in contrast, signal amplitude, and the strength of selectivity. These results argue against a purely feedforward explanation of recognition from partial information, and provide spatiotemporal constraints on theories of object recognition that involve recurrent processing.

[1]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[3]  Tiangang Zhou,et al.  Cortical Dynamics Underlying Face Completion in Human Visual System , 2010, The Journal of Neuroscience.

[4]  Yehezkel Yeshurun,et al.  Enhanced Category Tuning Revealed by Intracranial Electroencephalograms in High-Order Human Visual Areas , 2007, The Journal of Neuroscience.

[5]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[6]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[7]  Y. Miyashita,et al.  Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita , 1988, Nature.

[8]  Jeffrey S. Johnson,et al.  The recognition of partially visible natural objects in the presence and absence of their occluders , 2005, Vision Research.

[9]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[10]  E. Rolls Neural organization of higher visual functions , 1991, Current Opinion in Neurobiology.

[11]  R. Kakigi,et al.  Electrophysiological studies on human pain perception , 2005, Clinical Neurophysiology.

[12]  P. Fldik,et al.  The Speed of Sight , 2001, Journal of Cognitive Neuroscience.

[13]  Elias B. Issa,et al.  Precedence of the Eye Region in Neural Processing of Faces , 2012, The Journal of Neuroscience.

[14]  G. Kreiman,et al.  Timing, Timing, Timing: Fast Decoding of Object Information from Intracranial Field Potentials in Human Visual Cortex , 2009, Neuron.

[15]  I. Biederman,et al.  Priming contour-deleted images: Evidence for intermediate representations in visual object recognition , 1991, Cognitive Psychology.

[16]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[17]  R. Adolphs,et al.  Single-Unit Responses Selective for Whole Faces in the Human Amygdala , 2011, Current Biology.

[18]  Shinsuke Shimojo,et al.  Visual surface representation: a critical link between lower-level and higher level vision , 1995 .

[19]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[20]  Anitha Pasupathy,et al.  Transformation of shape information in the ventral pathway , 2007, Current Opinion in Neurobiology.

[21]  E. Rolls,et al.  A Neurodynamical cortical model of visual attention and invariant object recognition , 2004, Vision Research.

[22]  R. Wurtz,et al.  Visual responses of inferior temporal neurons in awake rhesus monkey. , 1983, Journal of neurophysiology.

[23]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.

[24]  A B Sekuler,et al.  Time course of amodal completion revealed by a shape discrimination task , 2001, Psychonomic bulletin & review.

[25]  Juan R. Vidal,et al.  Category-Specific Visual Responses: An Intracranial Study Comparing Gamma, Beta, Alpha, and ERP Response Selectivity , 2010, Front. Hum. Neurosci..

[26]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[27]  F. Mechler,et al.  Temporal coding of contrast in primary visual cortex: when, what, and why. , 2001, Journal of neurophysiology.

[28]  R. Shapley,et al.  The effect of contrast on the transfer properties of cat retinal ganglion cells. , 1978, The Journal of physiology.

[29]  Bruno Rossion,et al.  Faces are represented holistically in the human occipito-temporal cortex , 2006, NeuroImage.

[30]  C. Mehring,et al.  Inference of hand movements from local field potentials in monkey motor cortex , 2003, Nature Neuroscience.

[31]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[32]  David J. Jilk,et al.  Recurrent Processing during Object Recognition , 2011, Front. Psychol..

[33]  G. Orban,et al.  Responses of macaque inferior temporal neurons to overlapping shapes. , 1997, Cerebral cortex.

[34]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[35]  Lucy S. Petro,et al.  Dynamics of Visual Information Integration in the Brain for Categorizing Facial Expressions , 2007, Current Biology.

[36]  Anders M. Dale,et al.  Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature , 2010, NeuroImage.

[37]  Minami Ito,et al.  Size and position invariance of neuronal responses in monkey inferotemporal cortex. , 1995, Journal of neurophysiology.

[38]  Frédéric Gosselin,et al.  Bubbles: a technique to reveal the use of information in recognition tasks , 2001, Vision Research.

[39]  Leslie G. Ungerleider,et al.  Dissociation of object and spatial visual processing pathways in human extrastriate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[41]  C. Connor,et al.  Population coding of shape in area V4 , 2002, Nature Neuroscience.

[42]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[43]  Alison J. Wiggett,et al.  Functional MRI analysis of body and body part representations in the extrastriate and fusiform body areas. , 2007, Journal of neurophysiology.

[44]  James M. Brown,et al.  Influences of Occlusion, Color, and Luminance on the Perception of Fragmented Pictures , 2000, Perceptual and motor skills.

[45]  G. Orban,et al.  Selectivity of macaque inferior temporal neurons for partially occluded shapes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  Simon J. Thorpe,et al.  Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited , 2006, Vision Research.

[47]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[48]  Rafael Malach,et al.  Rapid completion effects in human high-order visual areas , 2004, NeuroImage.

[49]  Edward M. Callaway,et al.  Feedforward, feedback and inhibitory connections in primate visual cortex , 2004, Neural Networks.

[50]  Pejman Sehatpour,et al.  A human intracranial study of long-range oscillatory coherence across a frontal–occipital–hippocampal brain network during visual object processing , 2008, Proceedings of the National Academy of Sciences.

[51]  S. Hochstein,et al.  The reverse hierarchy theory of visual perceptual learning , 2004, Trends in Cognitive Sciences.

[52]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[53]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[54]  Gabriel Kreiman,et al.  Tutorial on Pattern Classification in Cell Recording , 2011 .

[55]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  Rafael Malach,et al.  Spatial and Object-Based Attention Modulates Broadband High-Frequency Responses across the Human Visual Cortical Hierarchy , 2013, The Journal of Neuroscience.

[57]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[58]  Kristina J. Nielsen,et al.  Dissociation Between Local Field Potentials and Spiking Activity in Macaque Inferior Temporal Cortex Reveals Diagnosticity-Based Encoding of Complex Objects , 2006, The Journal of Neuroscience.

[59]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[60]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[61]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[62]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.