A unifying poset perspective on alternating sign matrices, plane partitions, Catalan objects, tournaments, and tableaux

Alternating sign matrices (ASMs) are square matrices with entries 0, 1, or -1 whose rows and columns sum to 1 and whose nonzero entries alternate in sign. We present a unifying perspective on ASMs and other combinatorial objects by studying a certain tetrahedral poset and its subposets. We prove the order ideals of these subposets are in bijection with a variety of interesting combinatorial objects, including ASMs, totally symmetric self-complementary plane partitions (TSSCPPs), staircase shaped semistandard Young tableaux, Catalan objects, tournaments, and totally symmetric plane partitions. We prove product formulas counting these order ideals and give the rank generating function of some of the corresponding lattices of order ideals. We also prove an expansion of the tournament generating function as a sum over TSSCPPs. This result is analogous to a result of Robbins and Rumsey expanding the tournament generating function as a sum over alternating sign matrices.

[1]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[2]  J. Propp,et al.  Alternating sign matrices and domino tilings , 1991, math/9201305.

[3]  M. Schützenberger,et al.  Treillis et bases des groupes de Coxeter , 1996, Electron. J. Comb..

[4]  Howard Rumsey,et al.  Determinants and alternating sign matrices , 1986 .

[5]  D. Zeilberger,et al.  A Proof of George Andrews' and Dave Robbins' q-TSPP Conjecture (modulo a finite amount of routine calculations) , 2008, 0808.0571.

[6]  The poset perspective on alternating sign matrices , 2009, 0905.4495.

[7]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[8]  A refined Razumov-Stroganov conjecture II , 2004, cond-mat/0409576.

[9]  A. Razumov,et al.  Combinatorial Nature of the Ground-State Vector of the O(1) Loop Model , 2001 .

[10]  David P. Robbins,et al.  Alternating Sign Matrices and Descending Plane Partitions , 1983, J. Comb. Theory, Ser. A.

[11]  Doron Zeilberger,et al.  Proof of the alternating sign matrix conjecture , 1994, Electron. J. Comb..

[12]  P. Di Francesco A refined Razumov–Stroganov conjecture , 2004 .

[13]  D. Bressoud Proofs and Confirmations: The Story of the Alternating-Sign Matrix Conjecture , 1999 .

[14]  Greg Kuperberg,et al.  Alternating-Sign Matrices and Domino Tilings (Part I) , 1992 .

[15]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[16]  Donald F. Tibbs,et al.  At the Q , 2012 .

[17]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[18]  L. Carlitz,et al.  Two element lattice permutation numbers and their $q$-generalization , 1964 .

[19]  Greg Kuperberg,et al.  Another proof of the alternating sign matrix conjecture , 1996 .

[20]  James Haglund,et al.  The q, t-Catalan numbers and the space of diagonal harmonics : with an appendix on the combinatorics of Macdonald polynomials , 2007 .

[21]  P. Zinn-Justin,et al.  LETTER TO THE EDITOR: The quantum Knizhnik Zamolodchikov equation, generalized Razumov Stroganov sum rules and extended Joseph polynomials , 2005, math-ph/0508059.

[22]  A. Hamel,et al.  Bijective proofs of shifted tableau and alternating sign matrix identities , 2005, math/0507479.

[23]  John R. Stembridge The Enumeration of Totally Symmetric Plane Partitions , 1995 .

[24]  Nathan Reading,et al.  Order Dimension, Strong Bruhat Order and Lattice Properties for Posets , 2002, Order.

[25]  Souichi Okada,et al.  On the generating functions for certain classes of plane partitions , 1989, J. Comb. Theory, Ser. A.

[26]  George E. Andrews,et al.  Plane Partitions V: The TSSCPP Conjecture , 1994, J. Comb. Theory A.