A MODEL FOR CRACK PROPAGATION BASED ON VISCOUS APPROXIMATION

In the setting of antiplane linearized elasticity, we show the existence of quasistatic evolutions of cracks in brittle materials by using a vanishing viscosity approach, thus taking into account local minimization. The main feature of our model is that the path followed by the crack need not be prescribed a priori: indeed, it is found as the limit (in the sense of Hausdorff convergence) of curves obtained by an incremental procedure. The result is based on a continuity property for the energy release rate in a suitable class of admissible cracks.

[1]  Matteo Negri,et al.  QUASI-STATIC CRACK PROPAGATION BY GRIFFITH'S CRITERION , 2008 .

[2]  Ph. Destuynder,et al.  Sur une interpretation math'ematique de l''int'egrale de Rice en th'eorie de la rupture fragile , 1981 .

[3]  Christopher J. Larsen,et al.  Existence and convergence for quasi‐static evolution in brittle fracture , 2003 .

[4]  Rodica Toader,et al.  A Model for the Quasi-Static Growth¶of Brittle Fractures:¶Existence and Approximation Results , 2001 .

[5]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[6]  M. Negri A comparative analysis on variational models for quasi-static brittle crack propagation , 2010 .

[7]  U. Stefanelli A variational characterization of rate‐independent evolution , 2009 .

[8]  Minimizing movements of the Mumford and Shah energy , 1997 .

[9]  Alexander Mielke,et al.  Chapter 6 – Evolution of Rate-Independent Systems , 2005 .

[10]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[11]  DORIN BUCUR,et al.  A Duality Approach for the Boundary Variation of Neumann Problems , 2002, SIAM J. Math. Anal..

[12]  A. Mielke,et al.  BV SOLUTIONS AND VISCOSITY APPROXIMATIONS OF RATE-INDEPENDENT SYSTEMS ∗ , 2009, 0910.3360.

[13]  M. Negri Energy release rate along a kinked path , 2010 .

[14]  G. D. Maso,et al.  Quasistatic Crack Growth in Nonlinear Elasticity , 2005 .

[15]  Riccarda Rossi,et al.  Modeling solutions with jumps for rate-independent systems on metric spaces , 2008, 0807.0744.

[16]  Rodica Toader,et al.  AN ARTIFICIAL VISCOSITY APPROACH TO QUASISTATIC CRACK GROWTH , 2006, math/0607596.

[17]  Rodica Toader,et al.  Energy release rate and stress intensity factor in antiplane elasticity , 2011 .

[18]  Alexander Mielke,et al.  On the Rate-Independent Limit of Systems with Dry Friction and Small Viscosity , 2006 .

[19]  Gianni Dal Maso,et al.  A MODEL FOR THE QUASI-STATIC GROWTH OF BRITTLE FRACTURES BASED ON LOCAL MINIMIZATION , 2002 .

[20]  Morteza Zadimoghaddam,et al.  Minimizing movement , 2007, SODA '07.

[21]  Christopher J. Larsen,et al.  Epsilon‐stable quasi‐static brittle fracture evolution , 2009 .

[22]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[23]  A. Mielke,et al.  On the inviscid limit of a model for crack propagation , 2008 .

[24]  Antonin Chambolle,et al.  A Density Result in Two-Dimensional Linearized Elasticity, and Applications , 2003 .

[25]  Riccarda Rossi,et al.  A metric approach to a class of doubly nonlinear evolution equations and applications , 2008 .

[26]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[27]  G. D. Maso,et al.  Quasistatic crack growth in finite elasticity with non-interpenetration , 2010 .

[28]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[29]  A. Mielke,et al.  Crack growth in polyconvex materials , 2009 .