n-Mode Singular Vector Selection in Higher-Order Singular Value Decomposition

In this paper, we propose a method for selecting n-mode singular vectors in higher-order singular value decomposition. We select the minimum number of n-mode singular vectors, when the upper bound of a least-squares cost function is thresholded. The reduced n-ranks of all modes of a given tensor are determined automatically and the tensor is represented with the minimum number of dimensions. We apply the selection method to simultaneous low rank approximation of matrices. Experimental results show the effectiveness of the n-mode singular vector selection method.

[1]  Tamara G. Kolda,et al.  Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .

[2]  M. Alex O. Vasilescu Human motion signatures: analysis, synthesis, recognition , 2002, Object recognition supported by user interaction for service robots.

[3]  Demetri Terzopoulos,et al.  Multilinear image analysis for facial recognition , 2002, Object recognition supported by user interaction for service robots.

[4]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[5]  Kohei Inoue,et al.  Equivalence of Non-Iterative Algorithms for Simultaneous Low Rank Approximations of Matrices , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[6]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[7]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[8]  Narendra Ahuja,et al.  Facial expression decomposition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[9]  Pierre Comon,et al.  Tensor Decompositions, State of the Art and Applications , 2002 .

[10]  Jieping Ye,et al.  Generalized Low Rank Approximations of Matrices , 2005, Machine Learning.

[11]  C. Loan The ubiquitous Kronecker product , 2000 .

[12]  M. Alex O. Vasilescu,et al.  TensorTextures: multilinear image-based rendering , 2004, SIGGRAPH 2004.

[13]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.