n-Mode Singular Vector Selection in Higher-Order Singular Value Decomposition
暂无分享,去创建一个
[1] Tamara G. Kolda,et al. Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .
[2] M. Alex O. Vasilescu. Human motion signatures: analysis, synthesis, recognition , 2002, Object recognition supported by user interaction for service robots.
[3] Demetri Terzopoulos,et al. Multilinear image analysis for facial recognition , 2002, Object recognition supported by user interaction for service robots.
[4] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[5] Kohei Inoue,et al. Equivalence of Non-Iterative Algorithms for Simultaneous Low Rank Approximations of Matrices , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).
[6] Demetri Terzopoulos,et al. Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.
[7] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[8] Narendra Ahuja,et al. Facial expression decomposition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[9] Pierre Comon,et al. Tensor Decompositions, State of the Art and Applications , 2002 .
[10] Jieping Ye,et al. Generalized Low Rank Approximations of Matrices , 2005, Machine Learning.
[11] C. Loan. The ubiquitous Kronecker product , 2000 .
[12] M. Alex O. Vasilescu,et al. TensorTextures: multilinear image-based rendering , 2004, SIGGRAPH 2004.
[13] Andy Harter,et al. Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.