Fixed-Size LS-SVM Applied to the Wiener-Hammerstein Benchmark

Abstract This paper reports on the application of Fixed-Size Least Squares Support Vector Machines (FS-LSSVM) for the identification of the SYSID 2009 Wiener-Hammerstein benchmark data set. The FS-LSSVM is a modification of the standard Support Vector Machine and Least Squares Support Vector Machine (LS-SVM) designed to handle very large data sets. This approach is taken to estimate a nonlinear black-box (NARX) model from given input/output measurements. We indicate how to tune this approach to the specific case study. We obtain a best root mean squared error of 4.7×10 −3 on simulation of the predefined test set.

[1]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[2]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[3]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[4]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[5]  Johan A. K. Suykens,et al.  Cooperative Behavior in Coupled Simulated Annealing Processes with Variance Control , 2006 .

[6]  H. Akaike Statistical predictor identification , 1970 .

[7]  W. Greblicki,et al.  Nonparametric system identification , 2008 .

[8]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[9]  J. Suykens,et al.  A comparative study of ls-svm’s applied to the silver box identification problem , 2004 .

[10]  P. Burman A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods , 1989 .

[11]  Mark Girolami,et al.  Orthogonal Series Density Estimation and the Kernel Eigenvalue Problem , 2002, Neural Computation.

[12]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[13]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[14]  Johan A. K. Suykens,et al.  Electric Load Forecasting: Using Kernel-Based Modeling for Nonlinear System Identification , 2007 .

[15]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[16]  E. Nyström Über Die Praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben , 1930 .

[17]  B. De Moor,et al.  Electric Load Forecasting , 2007, IEEE Control Systems.

[18]  W. Haerdle Resampling for inference from curves , 1989 .