Space–time Wigner functions and their application to the analysis of a pulse shaper

The space–time Wigner function is a powerful tool for the analysis of femtosecond optical devices that act on both the spatial and the temporal features of ultrashort pulses. The advantages of this approach and the properties of the space–time Wigner function are reviewed. The matrix formalism that can be used to describe the action of dispersive first-order devices on any femtosecond pulse is presented. The method is used to describe and understand the behavior of an ultrashort light pulse propagating through a pulse shaper. The consequences of the limited resolution in the spectral-to-spatial conversion for the output pulse are fully analyzed.

[1]  Umstadter,et al.  Nonlinear plasma waves resonantly driven by optimized laser pulse trains. , 1994, Physical review letters.

[2]  M M Murnane,et al.  Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser. , 1993, Optics letters.

[3]  R. Simon,et al.  Generalized rays in first-order optics: Transformation properties of Gaussian Schell-model fields , 1984 .

[4]  On a Temporal‐Spatial Radiation Functional and its Measurement , 1986 .

[5]  Mj Martin Bastiaans Wigner distribution function and its application to first-order optics , 1979 .

[6]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[7]  J. Paye,et al.  The chronocyclic representation of ultrashort light pulses , 1992 .

[8]  S. Rice,et al.  New ideas for guiding the evolution of a quantum system. , 1992, Science.

[9]  K. Nelson,et al.  Ultrafast optical waveforms. , 1993, Science.

[10]  C. Page Instantaneous Power Spectra , 1952 .

[11]  Oscar E. Martínez,et al.  Grating and prism compressors in the case of finite beam size , 1986 .

[12]  F. Krausz,et al.  Operation of a femtosecond Ti:sapphire solitary laser in the vicinity of zero group-delay dispersion. , 1993, Optics letters.

[13]  J. Fujimoto,et al.  Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers. , 1994, Optics letters.

[14]  Oscar E. Martínez,et al.  Matrix formalism for pulse compressors , 1988 .

[15]  Gerard Mourou,et al.  1000 times expansion/compression of optical pulses for chirped pulse amplification , 1987 .

[16]  Andrew M. Weiner,et al.  Femtosecond spectral holography , 1992 .

[17]  Joseph H. Eberly,et al.  The time-dependent physical spectrum of light* , 1977 .

[18]  Rolf Gase,et al.  Time-dependent spectrum of linear optical systems , 1991 .

[19]  Andrew M. Weiner,et al.  Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor , 1986 .

[20]  Herschel Rabitz,et al.  Coherent Control of Quantum Dynamics: The Dream Is Alive , 1993, Science.

[21]  A. Friberg,et al.  Propagation of a generalized radiance in paraxial optical systems. , 1991, Applied optics.

[22]  B. Greene,et al.  Generation of optical pulses shorter than 0.1 psec by colliding pulse mode-locking , 1981, IEEE Journal of Quantum Electronics.

[23]  Mj Martin Bastiaans The Wigner distribution function applied to optical signals and systems , 1978 .

[24]  R. Gase The wolf function interacting with multi-layer systems , 1990 .

[25]  Jean-Pierre Guigay The ambiguity function in diffraction and isoplanatic imaging by partially coherent beams , 1978 .

[26]  U. Stamm,et al.  Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems , 1992 .

[27]  D. Strickland,et al.  Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses. , 1994, Optics letters.

[28]  A. Lohmann,et al.  The wigner distribution function and its optical production , 1980 .

[29]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[30]  E. Wolf Coherence and radiometry , 1978 .

[31]  A. Weiner,et al.  Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator. , 1990, Optics letters.

[32]  M. B. Danailov,et al.  Time-space Shaping of Light Pulses by Fourier Optical Processing , 1989 .

[33]  A. G. Kostenbauder,et al.  Ray-pulse matrices: a rational treatment for dispersive optical systems , 1990 .

[34]  Z. Bor,et al.  Behaviour of femtosecond pulses on the optical axis of a lens. Analytical description , 1994 .