Cluster-Centric Anomaly Detection and Characterization in Spatial Time Series

[1]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[2]  Walmir M. Caminhas,et al.  Multivariable Gaussian Evolving Fuzzy Modeling System , 2011, IEEE Transactions on Fuzzy Systems.

[3]  W. Pedrycz,et al.  Construction of fuzzy models through clustering techniques , 1993 .

[4]  Witold Pedrycz,et al.  A Development of Fuzzy Encoding and Decoding Through Fuzzy Clustering , 2008, IEEE Transactions on Instrumentation and Measurement.

[5]  Igor Skrjanc,et al.  Supervised Hierarchical Clustering in Fuzzy Model Identification , 2011, IEEE Transactions on Fuzzy Systems.

[6]  Christos Faloutsos,et al.  Efficiently supporting ad hoc queries in large datasets of time sequences , 1997, SIGMOD '97.

[7]  Dit-Yan Yeung,et al.  Time series clustering with ARMA mixtures , 2004, Pattern Recognit..

[8]  Witold Pedrycz,et al.  Forming consensus in the networks of knowledge , 2007, Eng. Appl. Artif. Intell..

[9]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[10]  Dzung L. Pham,et al.  Spatial Models for Fuzzy Clustering , 2001, Comput. Vis. Image Underst..

[11]  Pierpaolo D'Urso,et al.  Fuzzy Clustering for Data Time Arrays With Inlier and Outlier Time Trajectories , 2005, IEEE Transactions on Fuzzy Systems.

[12]  Lawrence O. Hall,et al.  A scalable framework for cluster ensembles , 2009, Pattern Recognit..

[13]  Pierpaolo D'Urso,et al.  A Fuzzy Clustering Model for Multivariate Spatial Time Series , 2010, J. Classif..

[14]  Glen D. Johnson Prospective spatial prediction of infectious disease: experience of New York State (USA) with West Nile Virus and proposed directions for improved surveillance , 2008, Environmental and Ecological Statistics.

[15]  Vipin Kumar,et al.  Comparative Evaluation of Anomaly Detection Techniques for Sequence Data , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[16]  Joydeep Ghosh,et al.  CONSENSUS-BASED ENSEMBLES OF SOFT CLUSTERINGS , 2008, MLMTA.

[17]  Kenji Yamanishi,et al.  A unifying framework for detecting outliers and change points from time series , 2006 .

[18]  Frank Klawonn,et al.  Fuzzy Clustering of Short Time-Series and Unevenly Distributed Sampling Points , 2003, IDA.

[19]  Pierre Gançarski,et al.  A global averaging method for dynamic time warping, with applications to clustering , 2011, Pattern Recognit..

[20]  Jiaqi Liu,et al.  A novel clustering method on time series data , 2011, Expert Syst. Appl..

[21]  Min Wang,et al.  Mining Spatial-temporal Clusters from Geo-databases , 2006, ADMA.

[22]  Eamonn J. Keogh,et al.  An online algorithm for segmenting time series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[23]  Elizabeth Ann Maharaj,et al.  Wavelet-based Fuzzy Clustering of Time Series , 2010, J. Classif..

[24]  E G Knox,et al.  The Detection of Space‐Time Interactions , 1964 .

[25]  Eamonn J. Keogh,et al.  A Novel Bit Level Time Series Representation with Implication of Similarity Search and Clustering , 2005, PAKDD.

[26]  Vipin Kumar,et al.  Anomaly Detection for Discrete Sequences: A Survey , 2012, IEEE Transactions on Knowledge and Data Engineering.

[27]  Christian Sonesson,et al.  A CUSUM framework for detection of space–time disease clusters using scan statistics , 2007, Statistics in medicine.

[28]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[29]  Witold Pedrycz,et al.  Cluster-Centric Fuzzy Modeling , 2014, IEEE Transactions on Fuzzy Systems.

[30]  Witold Pedrycz,et al.  Collaborative Fuzzy Clustering Algorithms: Some Refinements and Design Guidelines , 2012, IEEE Transactions on Fuzzy Systems.

[31]  Gregory F. Cooper,et al.  Bayesian Network Scan Statistics for Multivariate Pattern Detection , 2009 .

[32]  Fernando Gomide,et al.  Granular Models for Time‐Series Forecasting , 2008 .

[33]  Athanasios Kehagias,et al.  Predictive modular fuzzy systems for time-series classification , 1997, IEEE Trans. Fuzzy Syst..

[34]  R. Platt,et al.  A generalized linear mixed models approach for detecting incident clusters of disease in small areas, with an application to biological terrorism. , 2004, American journal of epidemiology.

[35]  Salvatore Sessa,et al.  The extended fuzzy C-means algorithm for hotspots in spatio-temporal GIS , 2011, Expert Syst. Appl..

[36]  Eyal Amir,et al.  Real-time Bayesian Anomaly Detection for Environmental Sensor Data , 2007 .

[37]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[38]  Han-Xiong Li,et al.  Spatially Constrained Fuzzy-Clustering-Based Sensor Placement for Spatiotemporal Fuzzy-Control System , 2010, IEEE Transactions on Fuzzy Systems.

[39]  G Gettinby,et al.  A stastistical system for detecting Salmonella outbreaks in British livestock , 2006, Epidemiology and Infection.

[40]  Raymond T. Ng,et al.  Indexing spatio-temporal trajectories with Chebyshev polynomials , 2004, SIGMOD '04.

[41]  A. Agogino,et al.  Entropy based anomaly detection applied to space shuttle main engines , 2006, 2006 IEEE Aerospace Conference.

[42]  Andrzej Bargiela,et al.  Fuzzy clustering with semantically distinct families of variables: Descriptive and predictive aspects , 2010, Pattern Recognit. Lett..

[43]  Dimitrios Gunopulos,et al.  A Wavelet-Based Anytime Algorithm for K-Means Clustering of Time Series , 2003 .

[44]  Sandro Vega-Pons,et al.  Weighted partition consensus via kernels , 2010, Pattern Recognit..

[45]  Witold Pedrycz,et al.  Agreement-based fuzzy C-means for clustering data with blocks of features , 2014, Neurocomputing.

[46]  André L. V. Coelho,et al.  Inducing multi-objective clustering ensembles with genetic programming , 2010, Neurocomputing.

[47]  Eamonn J. Keogh,et al.  Finding Unusual Medical Time-Series Subsequences: Algorithms and Applications , 2006, IEEE Transactions on Information Technology in Biomedicine.

[48]  I. Burhan Türksen,et al.  Enhanced Fuzzy System Models With Improved Fuzzy Clustering Algorithm , 2008, IEEE Transactions on Fuzzy Systems.

[49]  Elizabeth Ann Maharaj,et al.  Fuzzy clustering of time series in the frequency domain , 2011, Inf. Sci..

[50]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[51]  Duc Truong Pham,et al.  Control chart pattern recognition using a new type of self-organizing neural network , 1998 .

[52]  Witold Pedrycz,et al.  Semantic Web Content Analysis: A Study in Proximity-Based Collaborative Clustering , 2007, IEEE Transactions on Fuzzy Systems.

[53]  Witold Pedrycz,et al.  A consensus-driven fuzzy clustering , 2008, Pattern Recognit. Lett..

[54]  Miguel A. Sanz-Bobi,et al.  Auto-Regressive Processes Explained by Self-Organized Maps. Application to the Detection of Abnormal Behavior in Industrial Processes , 2011, IEEE Transactions on Neural Networks.

[55]  Ada Wai-Chee Fu,et al.  Efficient time series matching by wavelets , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[56]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[57]  Thomas G. Dietterich,et al.  Spatiotemporal Models for Data-Anomaly Detection in Dynamic Environmental Monitoring Campaigns , 2011, TOSN.

[58]  Slava Kisilevich,et al.  Spatio-temporal clustering , 2010, Data Mining and Knowledge Discovery Handbook.

[59]  Witold Pedrycz,et al.  P-FCM: a proximity -- based fuzzy clustering , 2004, Fuzzy Sets Syst..

[60]  Ana L. N. Fred,et al.  Combining multiple clusterings using evidence accumulation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[62]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[63]  Marjorie Skubic,et al.  Modeling Fuzziness Measures for Best Wavelet Selection , 2008, IEEE Transactions on Fuzzy Systems.

[64]  Clement T. Yu,et al.  Haar Wavelets for Efficient Similarity Search of Time-Series: With and Without Time Warping , 2003, IEEE Trans. Knowl. Data Eng..

[65]  Witold Pedrycz Proximity-Based Clustering: A Search for Structural Consistency in Data With Semantic Blocks of Features , 2013, IEEE Transactions on Fuzzy Systems.

[66]  Sylvia Richardson,et al.  A comparison of Bayesian spatial models for disease mapping , 2005, Statistical methods in medical research.

[67]  Roy George,et al.  Fuzzy Cluster Analysis of Spatio-Temporal Data , 2003, ISCIS.

[68]  Thomas A. Runkler,et al.  Forecasting of clustered time series with recurrent neural networks and a fuzzy clustering scheme , 2009, 2009 International Joint Conference on Neural Networks.

[69]  Jared Aldstadt,et al.  An incremental Knox test for the determination of the serial interval between successive cases of an infectious disease , 2007 .

[70]  Padhraic Smyth,et al.  Trajectory clustering with mixtures of regression models , 1999, KDD '99.

[71]  A. Hill,et al.  The North American Animal Disease Spread Model: a simulation model to assist decision making in evaluating animal disease incursions. , 2007, Preventive veterinary medicine.

[72]  Madasu Hanmandlu,et al.  Structure identification of generalized adaptive neuro-fuzzy inference systems , 2003, IEEE Trans. Fuzzy Syst..

[73]  A. Lawson,et al.  Review of methods for space–time disease surveillance , 2010, Spatial and Spatio-temporal Epidemiology.

[74]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[75]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[76]  Witold Pedrycz,et al.  Collaborative fuzzy clustering , 2002, Pattern Recognit. Lett..

[77]  P. Protopapas,et al.  Finding outlier light curves in catalogues of periodic variable stars , 2005, astro-ph/0505495.

[78]  Eamonn J. Keogh,et al.  Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases , 2001, Knowledge and Information Systems.

[79]  Eyke Hüllermeier,et al.  Comparing Fuzzy Partitions: A Generalization of the Rand Index and Related Measures , 2012, IEEE Transactions on Fuzzy Systems.

[80]  Maoguo Gong,et al.  Image change detection based on an improved rough fuzzy c-means clustering algorithm , 2013, International Journal of Machine Learning and Cybernetics.

[81]  Mohamed S. Kamel,et al.  On voting-based consensus of cluster ensembles , 2010, Pattern Recognit..

[82]  Li Wei,et al.  Experiencing SAX: a novel symbolic representation of time series , 2007, Data Mining and Knowledge Discovery.

[83]  Eamonn J. Keogh,et al.  Towards parameter-free data mining , 2004, KDD.

[84]  Panos Kalnis,et al.  On Discovering Moving Clusters in Spatio-temporal Data , 2005, SSTD.

[85]  Martin Kulldorff,et al.  Prospective time periodic geographical disease surveillance using a scan statistic , 2001 .

[86]  Yoshiharu Sato,et al.  On a multicriteria fuzzy Clustering Method for 3-Way Data , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[87]  Dino Pedreschi,et al.  Time-focused clustering of trajectories of moving objects , 2006, Journal of Intelligent Information Systems.

[88]  A. Khatkhate,et al.  Symbolic time-series analysis for anomaly detection in mechanical systems , 2006, IEEE/ASME Transactions on Mechatronics.

[89]  J. Ma,et al.  Time-series novelty detection using one-class support vector machines , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[90]  Cheng Yang,et al.  Hybrid sampling on mutual information entropy-based clustering ensembles for optimizations , 2010, Neurocomputing.

[91]  Paul R. Cohen,et al.  Bayesian Clustering by Dynamics Contents 1 Introduction 1 2 Clustering Markov Chains 2 , 2022 .

[92]  Eamonn J. Keogh,et al.  Locally adaptive dimensionality reduction for indexing large time series databases , 2001, SIGMOD '01.

[93]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[94]  Ricardo J. G. B. Campello,et al.  A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment , 2007, Pattern Recognit. Lett..

[95]  Rajeev Rastogi,et al.  Efficient algorithms for mining outliers from large data sets , 2000, SIGMOD 2000.

[96]  Daniel B. Neill,et al.  Expectation-based scan statistics for monitoring spatial time series data , 2009 .

[97]  Mohamed S. Kamel,et al.  Cumulative Voting Consensus Method for Partitions with Variable Number of Clusters , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[98]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[99]  Weina Wang,et al.  On fuzzy cluster validity indices , 2007, Fuzzy Sets Syst..

[100]  Eamonn J. Keogh,et al.  HOT SAX: efficiently finding the most unusual time series subsequence , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[101]  Carla E. Brodley,et al.  Solving cluster ensemble problems by bipartite graph partitioning , 2004, ICML.

[102]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[103]  P. Boesiger,et al.  A new correlation‐based fuzzy logic clustering algorithm for FMRI , 1998, Magnetic resonance in medicine.

[104]  Yan Shi,et al.  A general method of spatio-temporal clustering analysis , 2011, Science China Information Sciences.

[105]  Sheng-Tun Li,et al.  Fuzzy Time Series Forecasting With a Probabilistic Smoothing Hidden Markov Model , 2012, IEEE Transactions on Fuzzy Systems.

[106]  P A Rogerson,et al.  Surveillance systems for monitoring the development of spatial patterns. , 1997, Statistics in medicine.

[107]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[108]  M. Kulldorff,et al.  A Space–Time Permutation Scan Statistic for Disease Outbreak Detection , 2005, PLoS medicine.

[109]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[110]  Pierpaolo D’Urso,et al.  Autocorrelation-based fuzzy clustering of time series , 2009, Fuzzy Sets Syst..

[111]  Yun Yang,et al.  Time Series Clustering Via RPCL Network Ensemble With Different Representations , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[112]  Derek Anderson,et al.  Comparing Fuzzy, Probabilistic, and Possibilistic Partitions Using the Earth Mover’s Distance , 2013, IEEE Transactions on Fuzzy Systems.

[113]  James M. Keller,et al.  Comparing Fuzzy, Probabilistic, and Possibilistic Partitions , 2010, IEEE Transactions on Fuzzy Systems.

[114]  Shyi-Ming Chen,et al.  TAIEX Forecasting Based on Fuzzy Time Series and Fuzzy Variation Groups , 2011, IEEE Transactions on Fuzzy Systems.

[115]  Witold Pedrycz,et al.  A new PSO-optimized geometry of spatial and spatio-temporal scan statistics for disease outbreak detection , 2012, Swarm and Evolutionary Computation.

[116]  Pang-Ning Tan,et al.  A Robust Graph-Based Algorithm for Detection and Characterization of Anomalies in Noisy Multivariate Time Series , 2008, 2008 IEEE International Conference on Data Mining Workshops.

[117]  Konstantinos Kalpakis,et al.  Distance measures for effective clustering of ARIMA time-series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[118]  Srinivasan Parthasarathy,et al.  Anomaly detection and spatio-temporal analysis of global climate system , 2009, SensorKDD '09.

[119]  Yohsuke Kinouchi,et al.  Neural networks for event extraction from time series: a back propagation algorithm approach , 2005, Future Gener. Comput. Syst..

[120]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[121]  Christos Faloutsos,et al.  Fast subsequence matching in time-series databases , 1994, SIGMOD '94.

[122]  Witold Pedrycz,et al.  Collaborative clustering with the use of Fuzzy C-Means and its quantification , 2008, Fuzzy Sets Syst..

[123]  Andrej Dobnikar,et al.  Generation of a clustering ensemble based on a gravitational self-organising map , 2012, Neurocomputing.