Modular smoothing and KAM tori

[1]  O. Piro,et al.  Exact results on the critical function for the motion of an electron driven by two plane waves , 1992 .

[2]  J. Stark,et al.  On the standard map critical function , 1992 .

[3]  O. Piro,et al.  On Modular Smoothing and Scaling Functions for Mode Locking , 1992 .

[4]  I. Percival,et al.  Modular smoothing and finite perturbation theory , 1991 .

[5]  S. Marmi Critical functions for complex analytic maps , 1990 .

[6]  I. Percival,et al.  Critical function and modular smoothing , 1990 .

[7]  R. MacKay Exact results for an approximate renormalisation scheme and some predictions for the breakup of invariant ori , 1988 .

[8]  Robert S. MacKay,et al.  Universal small-scale structure near the boundary of siegel disks of arbitrary rotation number , 1987 .

[9]  I. C. Percival,et al.  Converse KAM: Theory and practice , 1985 .

[10]  S. Aubry The twist map, the extended Frenkel-Kontorova model and the devil's staircase , 1983 .

[11]  I. Percival Chaotic boundary of a Hamiltonial map , 1982 .

[12]  Dominique Escande,et al.  Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems , 1981 .

[13]  I. Percival A variational principle for invariant tori of fixed frequency , 1979 .

[14]  N. N. Filonenko,et al.  STOCHASTIC INSTABILITY OF TRAPPED PARTICLES AND THE CONDITIONS OF APPLICABILITY OF THE QUASILINEAR APPROXIMATION. , 1968 .

[15]  J. Mather,et al.  Existence of quasi-periodic orbits for twist homeomorphisms of the annulus , 1982 .

[16]  T. Apostol Modular Functions and Dirichlet Series in Number Theory , 1976 .