One-Pass Parallel Thinning: Analysis, Properties, and Quantitative Evaluation

A one-pass parallel thinning algorithm based on a number of criteria, including connectivity, unit-width convergence, medial axis approximation, noise immunity, and efficiency, is proposed. A pipeline processing model is assumed for the development. Precise analysis of the thinning process is presented to show its properties, and proofs of skeletal connectivity and convergence are provided. The proposed algorithm is further extended to the derived-grid to attain an isotropic medial axis representation. A set of measures based on the desired properties of thinning is used for quantitative evaluation of various algorithms. Image reconstruction from connected skeletons is also discussed. Evaluation shows that the procedures compare favorably to others. >

[1]  Zicheng Guo,et al.  Parallel thinning with two-subiteration algorithms , 1989, Commun. ACM.

[2]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[3]  R. M. Brown,et al.  Handprinted symbol recognition system , 1988, Pattern Recognit..

[4]  Christian Ronse,et al.  Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images , 1988, Discret. Appl. Math..

[5]  C. J. Hilditch,et al.  Linear Skeletons From Square Cupboards , 1969 .

[6]  Minsoo Suk,et al.  On machine recognition of hand-printed Chinese characters by feature relaxation , 1988, Pattern Recognit..

[7]  Kai Hwang,et al.  Parallel processing for super-computers and artificial intelligence , 1989 .

[8]  Angel L. DeCegama,et al.  Parallel processing architectures and VLSI hardware , 1989 .

[9]  Yung-Sheng Chen,et al.  A modified fast parallel algorithm for thinning digital patterns , 1988, Pattern Recognit. Lett..

[10]  Gabriella Sanniti di Baja,et al.  A Width-Independent Fast Thinning Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Christian Ronse,et al.  A Topological Characterization of Thinning , 1986, Theor. Comput. Sci..

[12]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[13]  Shigeki Yokoi,et al.  DISTANCE TRANSFORMATIONS AND SKELETONS OF DIGITIZED PICTURES WITH APPLICATIONS , 1981 .

[14]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[15]  Ronald H. Perrott,et al.  An improved parallel thinning algorithm , 1987, CACM.

[16]  T. Fukumura,et al.  An Analysis of Topological Properties of Digitized Binary Pictures Using Local Features , 1975 .

[17]  Roland T. Chin,et al.  Analysis of Thinning Algorithms Using Mathematical Morphology , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  A. ROSENFELD,et al.  Distance functions on digital pictures , 1968, Pattern Recognit..

[19]  Kendall Preston,et al.  Multicomputers and Image Processing: Algorithms and Programs; Based on a Symposium Held in Madison, WISC., May 26-29, 1981 , 1982 .

[20]  E. R. Davies,et al.  Thinning algorithms: A critique and a new methodology , 1981, Pattern Recognit..

[21]  P. Danielsson Euclidean distance mapping , 1980 .

[22]  Ben-Kwei Jang,et al.  Shape analysis using mathematical morphology , 1990 .

[23]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[24]  Carlo Arcelli,et al.  Pattern thinning by contour tracing , 1981 .

[25]  Patrick Shen-Pei Wang,et al.  A comment on “a fast parallel algorithm for thinning digital patterns” , 1986, CACM.

[26]  Gabriella Sanniti di Baja,et al.  A One-Pass Two-Operation Process to Detect the Skeletal Pixels on the 4-Distance Transform , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Nabil Jean Naccache,et al.  SPTA: A proposed algorithm for thinning binary patterns , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[28]  Roland T. Chin,et al.  A one-pass thinning algorithm and its parallel implementation , 1987, Comput. Vis. Graph. Image Process..

[29]  Richard W. Hall,et al.  Fast parallel thinning algorithms: parallel speed and connectivity preservation , 1989, CACM.

[30]  Luigi P. Cordella,et al.  From Local Maxima to Connected Skeletons , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Tony Kasvand,et al.  Critical points on a perfectly 8- or 6-connected thin binary line , 1983, Pattern Recognit..

[32]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.