The GAPS Programme with HARPS-N at TNG. XXXV. Fundamental properties of transiting exoplanet host stars

Exoplanetary properties depend on stellar properties: to know the planet with accuracy and precision it is necessary to know the star as accurately and precisely as possible. Our immediate aim is to characterize in a homogeneous and accurate way a sample of 27 transiting planet-hosting stars observed within the GAPS program. We determined stellar parameters (effective temperature, surface gravity, rotational velocity) and abundances of 26 elements (Li,C,N,O,Na,Mg,Al,Si,S,Ca,Sc,Ti,V,Cr,Fe,Mn,Co,Ni,Cu,Zn,Y,Zr,Ba,La,Nd,Eu). Our study is based on high-resolution HARPS-N@TNG and FEROS@ESO spectra and uniform techniques. We derived kinematic properties from Gaia data and estimated for the first time in exoplanet host stars ages using elemental ratios as chemical clocks. Teff of our stars is of 4400-6700 K, while [Fe/H] is within -0.3 and 0.4 dex. Lithium is present in 7 stars. [X/H] and [X/Fe] abundances vs [Fe/H] are consistent with the Galactic Chemical Evolution. The dependence of [X/Fe] with the condensation temperature is critically analyzed with respect to stellar and kinematic properties. All targets with measured C and O abundances show C/O<0.8, compatible with Si present in rock-forming minerals. Most of targets show 1.0<Mg/Si<1.5, compatible with Mg distributed between olivine and pyroxene. HAT-P-26, the target hosting the lowest-mass planet, shows the highest Mg/Si ratio. From our chemo-dinamical analysis we find agreement between ages and position within the Galactic disk. We note a tendency for higher density planets to be around metal-rich stars and hints of higher stellar abundances of some volatiles for lower mass planets. We cannot exclude that part of our results could be also related to the location of the stars within the Galactic disk. We trace the planetary migration scenario from the composition of the planets related to the chemical composition of the hosting stars