A Framework for Model-Based Tracking Experiments in Image Sequences

Motris, an integrated system for model-based tracking research, has been designed modularly to study the effects of algorithmic variations on tracking results. Motris attempts to avoid introducing bias into the relative assessment of alternative approaches. Such a bias may be caused by differences of implementation and parameterization if the component approaches are evaluated in separate testing environments. Tracking results are evaluated automatically on a significant test sample in order to quantify the effects of different combinations of alternatives. The Motris system environment thus allows an in-depth comparison between the so-called ‘Edge-Element Association’ approach documented in Haag and Nagel (1999) and the more recent ‘Expectation-Maximization’ approach reported by Pece and Worrall (2002).

[1]  A. F. Adams,et al.  The Survey , 2021, Dyslexia in Higher Education.

[2]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[3]  Hans-Hellmut Nagel,et al.  Toward the derivation of three-dimensional descriptions from image sequences for nonconvex moving objects , 1986, Comput. Vis. Graph. Image Process..

[4]  H. Nagel,et al.  Towards the derivation of 3-D descriptions from image sequences for non-convex moving objects , 1986 .

[5]  Hans-Hellmut Nagel,et al.  3D pose estimation by fitting image gradients directly to polyhedral models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[6]  Dimitris N. Metaxas,et al.  The integration of optical flow and deformable models with applications to human face shape and motion estimation , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Hans-Hellmut Nagel,et al.  Matching Object Models to Segments from an Optical Flow Field , 1996, ECCV.

[8]  Soo-Chang Pei,et al.  Vehicle-type motion estimation by the fusion of image point and line features , 1998, Pattern Recognit..

[9]  Michael Haag Bildfolgenauswertung zur Erkennung der Absichten von Straßenverkehrsteilnehmern , 1998, DISKI.

[10]  Dmitry B. Goldgof,et al.  Nonrigid motion analysis based on dynamic refinement of finite element models , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[11]  Dimitris N. Metaxas,et al.  Combining information using hard constraints , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[12]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[13]  Hyung-Il Choi,et al.  Active models for tracking moving objects , 2000, Pattern Recognit..

[14]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Bodo Rosenhahn,et al.  Extended Kalman Filter Design for Motion Estimation by Point and Line Observations , 2000, AFPAC.

[16]  Andrew W. Fitzgibbon,et al.  Multibody Structure and Motion: 3-D Reconstruction of Independently Moving Objects , 2000, ECCV.

[17]  David J. Fleet,et al.  Stochastic Tracking of 3D Human Figures Using 2D Image Motion , 2000, ECCV.

[18]  Lily Lee,et al.  Monitoring Activities from Multiple Video Streams: Establishing a Common Coordinate Frame , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Takeo Kanade,et al.  Introduction to the Special Section on Video Surveillance , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Patrick Bouthemy,et al.  Real-Time Tracking of Moving Persons by Exploiting Spatio-Temporal Image Slices , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Matthew Brand,et al.  Discovery and Segmentation of Activities in Video , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Ioannis A. Kakadiaris,et al.  Model-Based Estimation of 3D Human Motion , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Amnon Shashua,et al.  Multi-frame infinitesimal motion model for the reconstruction of (dynamic) scenes with multiple linearly moving objects , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[24]  Hans-Hellmut Nagel,et al.  Estimation and Interpretation of Discontinuities in Optical Flow Fields , 2001, ICCV.

[25]  Thomas B. Moeslund,et al.  A Survey of Computer Vision-Based Human Motion Capture , 2001, Comput. Vis. Image Underst..

[26]  Filiberto Pla,et al.  Motion-based segmentation and region tracking in image sequences , 2001, Pattern Recognit..

[27]  Michel Dhome,et al.  Real time tracking of 3D objects: an efficient and robust approach , 2002, Pattern Recognit..

[28]  Azriel Rosenfeld,et al.  Estimating relative vehicle motions in traffic scenes , 2002, Pattern Recognit..

[29]  Abdol-Reza Mansouri,et al.  Region Tracking via Level Set PDEs without Motion Computation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Andrew Blake,et al.  An HMM-Based Segmentation Method for Traffic Monitoring Movies , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Daijin Kim,et al.  Real-time multiple people tracking using competitive condensation , 2002, Object recognition supported by user interaction for service robots.

[32]  Anthony D. Worrall,et al.  Tracking with the EM Contour Algorithm , 2002, ECCV.

[33]  I. Haritaoglu,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002 .

[34]  Daniel Cremers,et al.  Statistical shape knowledge in variational motion segmentation , 2003, Image Vis. Comput..

[35]  Tieniu Tan,et al.  Recent developments in human motion analysis , 2003, Pattern Recognit..

[36]  Mohan M. Trivedi,et al.  Detecting Moving Shadows: Algorithms and Evaluation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Mohammed Yeasin,et al.  A 2D/3D model-based object tracking framework , 2003, Pattern Recognit..

[38]  Jitendra Malik,et al.  Fast vehicle detection with probabilistic feature grouping and its application to vehicle tracking , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[39]  Michalis E. Zervakis,et al.  A survey of video processing techniques for traffic applications , 2003, Image Vis. Comput..

[40]  In-So Kweon,et al.  Fast object recognition using dynamic programming from combination of salient line groups , 2003, Pattern Recognit..

[41]  Sei-Wang Chen,et al.  Pedestrian detection and tracking at crossroads , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[42]  Arthur E. C. Pece Generative model based vision , 2003, Image Vis. Comput..

[43]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Cor J. Veenman,et al.  Motion tracking as a constrained optimization problem , 2003, Pattern Recognit..

[45]  Luc Van Gool,et al.  An adaptive color-based particle filter , 2003, Image Vis. Comput..

[46]  Cina Motamed,et al.  A Cooperative Distributed Vision Algorithm for Wide Area Vehicle Tracking , 2003 .

[47]  Tieniu Tan,et al.  Model-Based Localisation and Recognition of Road Vehicles , 1998, International Journal of Computer Vision.

[48]  Markus Middendorf Zur Auswertung lokaler Grauwertstrukturen , 2004 .

[49]  Vincent Lepetit,et al.  Stable real-time 3D tracking using online and offline information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Tieniu Tan,et al.  People tracking based on motion model and motion constraints with automatic initialization , 2004, Pattern Recognit..

[51]  Pascal Fua,et al.  Regularized Bundle-Adjustment to Model Heads from Image Sequences without Calibration Data , 2000, International Journal of Computer Vision.

[52]  Kuntal Sengupta,et al.  Co-operative Multi-target Tracking and Classification , 2004, ECCV.

[53]  Hans-Hellmut Nagel,et al.  Steps toward a Cognitive Vision System , 2004, AI Mag..

[54]  Derek R. Magee,et al.  Tracking multiple vehicles using foreground, background and motion models , 2004, Image Vis. Comput..

[55]  Paolo Remagnino,et al.  Distributed intelligence for multi-camera visual surveillance , 2004, Pattern Recognit..

[56]  Hans-Hellmut Nagel,et al.  Combination of Edge Element and Optical Flow Estimates for 3D-Model-Based Vehicle Tracking in Traffic Image Sequences , 1999, International Journal of Computer Vision.

[57]  Hans-Hellmut Nagel,et al.  Comparison of Edge-Driven Algorithms for Model-Based Motion Estimation , 2004, SCVMA.

[58]  Concettina Guerra,et al.  Model-based and image-based 3D scene representation for interactive visualization , 2004, Comput. Vis. Image Underst..

[59]  Allen R. Hanson,et al.  LAMP: 3D layered, adaptive-resolution, and multi-perspective panorama - a new scene representation , 2004, Comput. Vis. Image Underst..

[60]  Mubarak Shah,et al.  Tri-view morphing , 2004, Comput. Vis. Image Underst..

[61]  Hans-Hellmut Nagel,et al.  Differential Analysis of Two Model-Based Vehicle Tracking Approaches , 2004, DAGM-Symposium.

[62]  Stephen J. Maybank,et al.  Visual Surveillance for Moving Vehicles , 1998, International Journal of Computer Vision.

[63]  Mark S. Nixon,et al.  Automated person recognition by walking and running via model-based approaches , 2004, Pattern Recognit..

[64]  David Suter,et al.  Object tracking in image sequences using point features , 2005, Pattern Recognit..

[65]  Sven J. Dickinson,et al.  Incremental model-based estimation using geometric constraints , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  Charay Lerdsudwichai,et al.  Tracking multiple people with recovery from partial and total occlusion , 2005, Pattern Recognit..

[67]  Andrew Zisserman,et al.  Object Level Grouping for Video Shots , 2004, International Journal of Computer Vision.

[68]  A. Pece The Kalman-EM Contour Tracker , 2022 .