Effects of Secondary Acceptors on Excited-State Properties of Sky-Blue Thermally Activated Delayed Fluorescence Molecules: Luminescence Mechanism and Molecular Design.

The development of efficient sky-blue thermally activated delayed fluorescence (TADF) emitters is highly desired. However, the types and amounts of sky-blue TADF are far from meeting the requirements, and effective molecular design strategies are expected. Herein, the photophysical properties and excited-state dynamics of 12 molecules are theoretically studied based on the thermal vibration correlation function method. Distributions of holes and electrons are analyzed by the heat maps. The frontier molecular orbital distribution, adiabatic singlet-triplet energy gap, and reorganization energy are analyzed in detail. Furthermore, the radiative and non-radiative as well as the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes are studied, and the up-conversion process is illustrated. Our results indicate that different substitution positions and numbers play an important role in the luminescence properties of TADF molecules. The meta-position substitutions restrict the geometry variations, hinder the non-radiative energy consumption process, and promote the radiative process of TADF molecules. Meanwhile, molecules with ortho-position substitutions possess the smallest energy gaps (ΔEst) and the largest RISC rates. Moreover, molecules with the substitutions of one tBCz group and two PO groups have the smallest ΔEst and the largest spin orbital coupling. Thus, a wise molecular design strategy, namely, ortho-position substitutions as well as substitutions with one tBCz group and two PO groups, is proposed to facilitate the RISC process. Based on this rule, new efficient TADF molecules are theoretically designed and proposed. Our work reasonably elucidates the experimental measurements, and the effects of different substitution numbers and positions of secondary acceptors on TADF properties are highlighted, which could provide a theoretical perspective for designing efficient sky-blue TADF molecules.