Effect of CTXφ prophage deletion in cholera agent on expression of regulatory genes controlling virulence and biofilm formation

[1]  Ya. M. Krasnov,et al.  Genome structure and origin of nontoxigenic strains of Vibrio cholerae of El Tor biovar with different epidemiological significance , 2016, Russian Journal of Genetics.

[2]  N. I. Smirnova,et al.  Genome structure and origin of nontoxigenic strains of Vibrio cholerae of El Tor biovar with different epidemiological significance , 2016, Russian Journal of Genetics.

[3]  Ronald K. Taylor,et al.  Intestinal Colonization Dynamics of Vibrio cholerae , 2015, PLoS pathogens.

[4]  T. Cebula,et al.  Hybrid Vibrio cholerae El Tor Lacking SXT Identified as the Cause of a Cholera Outbreak in the Philippines , 2015, mBio.

[5]  Roger G. Linington,et al.  Living in the matrix: assembly and control of Vibrio cholerae biofilms , 2015, Nature Reviews Microbiology.

[6]  T. Ilyina Filamentous bacteriophages and their role in the virulence and evolution of pathogenic bacteria , 2015, Molecular Genetics, Microbiology and Virology.

[7]  Ivan Erill,et al.  Identification and Characterization of VpsR and VpsT Binding Sites in Vibrio cholerae , 2015, Journal of bacteriology.

[8]  D. R. Leitner,et al.  Identification of genes induced in Vibrio cholerae in a dynamic biofilm system , 2014, International journal of medical microbiology : IJMM.

[9]  W. Robins,et al.  RS1 Satellite Phage Promotes Diversity of Toxigenic Vibrio cholerae by Driving CTX Prophage Loss and Elimination of Lysogenic Immunity , 2014, Infection and Immunity.

[10]  S. P. Zadnova,et al.  Genovariants of Vibrio cholerae biovar El Tor: Construction, molecular-genetic, and proteomic analyses , 2014, Molecular Genetics, Microbiology and Virology.

[11]  N. B. Cheldyshova,et al.  Comparative molecular-genetic analysis of mobile elements in natural strains of cholera agent , 2013, Russian Journal of Genetics.

[12]  E. A. Ananko,et al.  Transcription regulatory codes of eukaryotic genomes , 2013, Russian Journal of Genetics.

[13]  S. Faruque,et al.  Satellite phage TLCϕ enables toxigenic conversion by CTX phage through dif site alteration , 2010, Nature.

[14]  F. Yildiz,et al.  Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis , 2010, Microbiology.

[15]  Bradd J. Haley,et al.  Discovery of novel Vibrio cholerae VSP-II genomic islands using comparative genomic analysis. , 2010, FEMS microbiology letters.

[16]  Jun Zhu,et al.  The Virulence Transcriptional Activator AphA Enhances Biofilm Formation by Vibrio cholerae by Activating Expression of the Biofilm Regulator VpsT , 2009, Infection and Immunity.

[17]  Victor J. DiRita,et al.  Regulatory Networks Controlling Vibrio cholerae Virulence Gene Expression , 2007, Infection and Immunity.

[18]  G. Skogan,et al.  Detection of Vibrio cholerae by Real-Time Nucleic Acid Sequence-Based Amplification , 2007, Applied and Environmental Microbiology.

[19]  K. L. Cottingham,et al.  Environmental microbe and human pathogen: the ecology and microbiology of Vibrio cholerae , 2003 .

[20]  S. Faruque,et al.  ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Sack,et al.  New Variants of Vibrio cholerae O1 Biotype El Tor with Attributes of the Classical Biotype from Hospitalized Patients with Acute Diarrhea in Bangladesh , 2002, Journal of Clinical Microbiology.

[22]  Bonnie L. Bassler,et al.  Quorum-sensing regulators control virulence gene expression in Vibrio cholerae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[24]  K. Klose,et al.  Characterization of Vibrio cholerae O1 El TorgalU and galE Mutants: Influence on Lipopolysaccharide Structure, Colonization, and Biofilm Formation , 2001, Infection and Immunity.

[25]  M. Waldor,et al.  Regulation and Temporal Expression Patterns of Vibrio cholerae Virulence Genes during Infection , 1999, Cell.

[26]  D. Maneval,et al.  A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria , 1999, Nature.

[27]  M. Waldor,et al.  Regulation, replication, and integration functions of the Vibrio cholerae CTXφ are encoded by region RS2 , 1997, Molecular microbiology.

[28]  Y. Chang,et al.  Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment , 1992, Infection and immunity.

[29]  W. Cray,et al.  Determinants of immunogenicity and mechanisms of protection by virulent and mutant Vibrio cholerae O1 in rabbits , 1988, Infection and immunity.

[30]  J. Mekalanos,et al.  Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development , 1983, Nature.

[31]  P. Hitchcock,et al.  Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels , 1983, Journal of bacteriology.

[32]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[33]  S. P. Zadnova,et al.  [Effects of the recombinant plasmid carrying the genes of cholera prophages CTX and RS1 on the expression of virulence and immunogenicity genes in the cholera pathogen]. , 2005, Molecular Genetics Microbiology and Virology (Russian version).

[34]  Zadnova Sp,et al.  Effects of the recombinant plasmid carrying the genes of cholera prophages CTX and RS1 on the expression of virulence and immunogenicity genes in the cholera pathogen , 2005 .