Radio-frequency measurement in semiconductor quantum computation

Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.

[1]  T. Ihn,et al.  An in situ tunable radio-frequency quantum point contact , 2010, 1009.1746.

[2]  S. Tarucha,et al.  Few-electron quantum dots , 2001 .

[3]  J. R. Petta,et al.  Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier , 2015, 1502.01283.

[4]  J I Colless,et al.  Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. , 2012, Physical review letters.

[5]  A. Gossard,et al.  Frequency-selective single-photon detection using a double quantum dot. , 2007, Physical review letters.

[6]  A. Yacoby,et al.  Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits , 2012, Science.

[7]  M. Vinet,et al.  Radio-frequency dispersive detection of donor atoms in a field-effect transistor , 2013, 1312.3363.

[8]  T. Ihn,et al.  Evaluating charge noise acting on semiconductor quantum dots in the circuit quantum electrodynamics architecture , 2014, 1405.3085.

[9]  H. Lu,et al.  Frequency multiplexing for readout of spin qubits , 2013, 1312.5064.

[10]  A. Dzurak,et al.  A silicon radio-frequency single electron transistor , 2008 .

[11]  R Brunner,et al.  Two-qubit gate of combined single-spin rotation and interdot spin exchange in a double quantum dot. , 2011, Physical review letters.

[12]  Guo Guangcan,et al.  Electron States in Parallel Double Quantum Dots with a Tunable Inter-Dot Coupling , 2009 .

[13]  Jacob M. Taylor,et al.  Quantum-dot-based resonant exchange qubit. , 2013, Physical review letters.

[14]  D. P. DiVincenzo,et al.  Coherent spin manipulation in an exchange-only qubit , 2010, 1005.0273.

[15]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[16]  A. C. Gossard,et al.  Relaxation and readout visibility of a singlet-triplet qubit in an Overhauser field gradient , 2011, 1108.4210.

[17]  A. C. Doherty,et al.  Suppressing qubit dephasing using real-time Hamiltonian estimation , 2014, Nature Communications.

[18]  D. Ritchie,et al.  Sensitive radio-frequency measurements of a quantum dot by tuning to perfect impedance matching , 2015, 1510.06944.

[19]  Maud Vinet,et al.  Direct detection of a transport-blocking trap in a nanoscaled silicon single-electron transistor by radio-frequency reflectometry , 2014 .

[20]  John King Gamble,et al.  Pulse-gated quantum-dot hybrid qubit. , 2012, Physical review letters.

[21]  D. A. Ritchie,et al.  Single shot charge detection using a radio-frequency quantum point contact , 2007, 0907.1010.

[22]  A. Micolich,et al.  Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor , 2013, 1312.5410.

[23]  Adele E. Schmitz,et al.  Isotopically enhanced triple-quantum-dot qubit , 2015, Science Advances.

[24]  A. Gossard,et al.  Rapid single-shot measurement of a singlet-triplet qubit. , 2009, Physical review letters.

[25]  L. Vandersypen,et al.  Real-time detection of single-electron tunneling using a quantum point contact , 2004, cond-mat/0407121.

[26]  W. Yi,et al.  Harmonically trapped quasi-two-dimensional Fermi gases with synthetic spin-orbit coupling , 2016 .

[27]  Jacob M. Taylor,et al.  Self-consistent measurement and state tomography of an exchange-only spin qubit. , 2013, Nature nanotechnology.

[28]  J. Petta,et al.  Charge relaxation in a single-electron Si/SiGe double quantum dot. , 2013, Physical review letters.

[29]  A. Gossard,et al.  Fast single-charge sensing with a rf quantum point contact , 2007, 0707.2946.

[30]  R. Schoelkopf,et al.  Noise performance of the radio-frequency single-electron transistor , 2003 .

[31]  Da Wei,et al.  Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator , 2016 .

[32]  A. Gossard,et al.  Scaling of dynamical decoupling for spin qubits. , 2011, Physical review letters.

[33]  M. F. Gonzalez-Zalba,et al.  Probing the limits of gate-based charge sensing , 2015, Nature Communications.

[34]  Elena Ferraro,et al.  Effective Hamiltonian for the hybrid double quantum dot qubit , 2013, Quantum Inf. Process..

[35]  A. Gossard,et al.  Interlaced dynamical decoupling and coherent operation of a singlet-triplet qubit. , 2010, Physical review letters.

[36]  J. Petta,et al.  Radio frequency charge parity meter. , 2012, Physical review letters.

[37]  Amir Yacoby,et al.  Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath. , 2010, Physical review letters.

[38]  A. C. Gossard,et al.  Fast Sensing of Double-Dot Charge Arrangement and Spin State with a Radio-Frequency Sensor Quantum Dot , 2010, 1001.3585.

[39]  J. Kycia,et al.  A high speed radio-frequency quantum point contact charge detector for time resolved readout applications of spin qubits , 2010 .

[40]  H. Lu,et al.  Cryogenic Control Architecture for Large-Scale Quantum Computing , 2014, 1409.2202.

[41]  S. Gustavsson,et al.  Counting statistics of single electron transport in a quantum dot. , 2006 .

[42]  G. Burkard,et al.  Coupling of three-spin qubits to their electric environment , 2016, 1607.02351.

[43]  M. Beck,et al.  Dipole coupling of a double quantum dot to a microwave resonator. , 2011, Physical review letters.

[44]  G. Guo,et al.  Quantum computation on gate-defined semiconductor quantum dots , 2012 .

[45]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[46]  J. R. Petta,et al.  Radio frequency charge sensing in InAs nanowire double quantum dots , 2012, 1205.6494.

[47]  P Stano,et al.  Quantum Dephasing in a Gated GaAs Triple Quantum Dot due to Nonergodic Noise. , 2015, Physical review letters.

[48]  Xuedong Hu,et al.  Fast hybrid silicon double-quantum-dot qubit. , 2011, Physical review letters.

[49]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[50]  L. M. K. Vandersypen,et al.  Nondestructive measurement of electron spins in a quantum dot , 2006 .

[51]  Werner Wegscheider,et al.  Measurement Back-Action in Quantum Point-Contact Charge Sensing , 2010, Entropy.

[52]  Adele E. Schmitz,et al.  Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.

[53]  Xuedong Hu,et al.  Tunable Hybrid Qubit in a GaAs Double Quantum Dot. , 2016, Physical review letters.

[54]  D. Williams,et al.  Radio-frequency point-contact electrometer , 2006, 0708.2473.

[55]  R. N. Schouten,et al.  Cryogenic amplifier for fast real-time detection of single-electron tunneling , 2007, 0708.0461.

[56]  U. Gasser,et al.  Quantum dots investigated with charge detection techniques , 2009, 0905.3398.

[57]  S. Manus,et al.  Radio frequency pulsed-gate charge spectroscopy on coupled quantum dots , 2010, 1006.5554.

[58]  D. Loss,et al.  Prospects for Spin-Based Quantum Computing in Quantum Dots , 2012, 1204.5917.

[59]  Zhan Shi,et al.  Quantum control and process tomography of a semiconductor quantum dot hybrid qubit , 2014, Nature.