A comparison of conformational energies calculated by molecular mechanics (MM2(85), Sybyl 5.1, Sybyl 5.21, and ChemX) and semiempirical (AM1 and PM3) methods

Conformational energies of different conformers have been calculated for a series of molecules using various molecular mechanics and semiempirical methods. The quality of the force fields has also been tested by calculating barriers to rotation about carbon‐carbon bonds. The molecular mechanics force fields used are MM2(85), Sybyl 5.1, Sybyl 5.21, and ChemX, ver. Jan 89. The semiempirical methods used are AM1 and PM3. Molecules with different functional groups, for which good experimental data exist, have been selected. The semiempirical methods generally calculate barriers to rotation which are lower than the experimentally determined. The conformational energies for hydrocarbons are reasonably well reproduced by all tested methods although MM2(85) gives the quantitatively best agreement with experiments. For compounds containing oxygen, nitrogen and halogens MM2(85) gives results which are in best agreement with the experimentally determined values.

[1]  N. Zefirov,et al.  The gauche effect , 1978 .

[2]  D. E. Mann,et al.  Microwave Spectra of Molecules Exhibiting Internal Rotation. I. Propylene , 1957 .

[3]  K. Kveseth CONFORMATIONAL ANALYSIS PART 1, THE TEMPERATUR EFFECT ON THE STRUCTURE AND COMPOSITION OF THE ROTATIONAL CONFORMERS OF 1,2‐DICHLOROETHANE AS STUDIED BY GAS ELECTRON DIFFRACTION , 1974 .

[4]  Jenn-Huei Lii,et al.  Benzene, aromatic rings, van der Waals molecules, and crystals of aromatic molecules in molecular mechanics (MM3) , 1987 .

[5]  J. Nielsen,et al.  An Electron Diffraction Analysis of the Conformational Ratio in Monofluorocyclohexane. , 1962 .

[6]  T. Kitagawa,et al.  Energy Difference between Rotational Isomers of Methyl Ethyl Ether , 1968 .

[7]  William L. Jorgensen,et al.  Cis-trans energy difference for the peptide bond in the gas phase and in aqueous solution , 1988 .

[8]  O. Subbotin,et al.  Application of carbon-13 nuclear magnetic resonance spectrometry to the study of isomer and conformer ratios of dichlorocyclohexanes in their mixtures , 1976 .

[9]  Tommy Liljefors,et al.  Molbuild - an interactive computer graphics interface to molecular mechanics , 1983 .

[10]  L. A. Carreira,et al.  Determination of the torsional potential function for styrene , 1975 .

[11]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[12]  W. Fabian AM1 calculations of rotation around essential single bonds and preferred conformations in conjugated molecules , 1988 .

[13]  G. Buemi,et al.  Molecular conformation of cyclenes. I. Cyclohexene, cycloheptene, cis- and trans-cyclooctene, cis- and trans-cyclononene , 1968 .

[14]  Kozo Kuchitsu,et al.  Molecular Structure of N-Methylacetamide as Studied by Gas Electron Diffraction , 1973 .

[15]  J. Stewart Optimization of parameters for semiempirical methods II. Applications , 1989 .

[16]  E. Fischer,et al.  The microwave spectrum of gauche-ethylamine , 1984 .

[17]  K. D. Hargrave,et al.  Conformational analysis. 39. Carbon-13 NMR spectra of saturated heterocycles. 9. Piperidine and N-methylpiperidine , 1980 .

[18]  William F. Murphy,et al.  Rotational isomerism. XI. Raman spectra of n-butane, 2-methylbutane, and 2, 3-dimethylbutane , 1974 .

[19]  S. Saito,et al.  Barrier to internal rotation in ethane from the microwave spectrum of CH3CHD2 , 1979 .

[20]  Harutoshi Takeo,et al.  Molecular structure and conformation of 1-chloropropane as determined by gas electron diffraction and microwave spectroscopy , 1984 .

[21]  K. Kozima,et al.  The Two Stable Isomers of Chlorocyclohexane , 1958 .

[22]  F. Anet,et al.  Spectroscopic detection of the twist-boat conformation of cyclohexane. Direct measurement of the free energy difference between the chair and the twist-boat , 1975 .

[23]  Norman L. Allinger,et al.  On the out‐of‐plane deformation of aromatic rings, and its representation by molecular mechanics , 1987 .

[24]  T. Liljefors,et al.  A note on torsional force constants in molecular mechanics for a methyl group attached to a conjugated system , 1985 .

[25]  R. Carter,et al.  Crystal and molecular structure of 2,4,6-tribromo-1,3,5-trineopentylbenzene: indications for attractive steric effects in the crystal , 1978 .

[26]  N. L. Allinger,et al.  Conformational Analysis. XVII.1 The 1,3-Diaxial Methyl-Methyl Interaction2 , 1961 .

[27]  P. Crowley,et al.  Conformational effects in compounds with 6-membered rings—XII : The conformational equilibrium in n-methylpiperidine , 1977 .

[28]  J. Wood,et al.  Combined Infrared and Microwave Determination of Torsional Parameters , 1970 .

[29]  William G. Fateley,et al.  Internal rotation in ethylamine: A treatment as a two‐top problem , 1975 .

[30]  M. Manoharan,et al.  Conformational analysis. 40. Conformation of 1-methyl-1-phenylcyclohexane and conformational energies of the phenyl and vinyl groups , 1981 .

[31]  D. Grant,et al.  Carbon-13 magnetic resonance. IX. Methylcyclohexanes , 1967 .

[32]  R. Seip,et al.  Conformational Analysis. XII. The Structure of Gaseous 1,3-Dichloropropane, (CH2Cl)2CH2, as Determined by Electron Diffraction and Compared with Molecular Mechanics Calculations. , 1976 .

[33]  N. W. Murrall,et al.  How accurate does a force field need to be? , 1989, Comput. Chem..

[34]  T. Liljefors,et al.  Conformational energies of trans-1,4-difluoro- and trans-1-chloro-4-fluorocyclohexane. The role of electrostatic interactions. , 1987 .

[35]  N. L. Allinger,et al.  CONFORMATIONAL ANALYSIS. X. THE ENERGY OF THE BOAT FORM OF THE CYCLOHEXANE RING1,2 , 1960 .

[36]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[37]  E. W. Garbisch,et al.  Conformations. IV. The Conformational Preference of the Phenyl Group in Cyclohexane , 1963 .

[38]  O. Hassel,et al.  Electron Diffraction Conformational Analyses of Trans-1,4-Dichloro- and Dibromocyclohexane. , 1959 .

[39]  D. T. Friesen,et al.  Conformational analysis. 7. 1,2-Difluoroethane. An electron-diffraction investigation of the molecular structure, composition, trans-gauche energy and entropy differences, and potential hindering internal rotation , 1980 .

[40]  N. L. Owen,et al.  Spectroscopic studies of some substituted methyl formates. Part 1.—Microwave spectra and internal rotation barriers of methyl-fluoroformate, -propiolate, -cyanoformate, -acrylate and -acetate , 1971 .

[41]  Johann Gasteiger,et al.  Prediction of proton magnetic resonance shifts: The dependence on hydrogen charges obtained by iterative partial equalization of orbital electronegativity , 1981 .

[42]  N. L. Allinger,et al.  Hydrogen bonding in MM2 , 1988 .

[43]  B. E. Hudson,et al.  Structural Determination of cis- and trans-1,3-Dibromocyclohexane1 , 1963 .

[44]  Norman L. Allinger,et al.  The MMP2 calculational method , 1987 .

[45]  J. Gasteiger,et al.  ITERATIVE PARTIAL EQUALIZATION OF ORBITAL ELECTRONEGATIVITY – A RAPID ACCESS TO ATOMIC CHARGES , 1980 .

[46]  K. Tanabe Calculation of infrared band intensities and determination of energy differences of rotational isomers of 1,2-dichloro-, 1,2-dibromo- and 1-chloro-2-bromoethane , 1972 .

[47]  Y. S. Li,et al.  Raman spectra of gases. XVIII - Internal rotational motions in ethylamine and ethylamine-d2 , 1975 .

[48]  H. Günthard,et al.  Trapping of unstable molecular conformations in argon matrices: Gauche- and trans-1,2-difluoroethane , 1975 .

[49]  W. Flygare,et al.  Barrier to Internal Rotation of the Methyl Group and the Identification of the trans Form of Isoprene , 1969 .

[50]  T. Shimanouchi,et al.  Skeletal deformation vibrations and rotational isomerism of some ketones and olefins , 1968 .

[51]  Johann Gasteiger,et al.  Electrostatic interactions in molecular mechanics (MM2) calculations via PEOE partial charges I. Haloalkanes , 1988 .

[52]  L. A. Carreira Determination of the torsional potential function of 1,3‐butadiene , 1975 .

[53]  P. Stilbs,et al.  BARRIERS TO INTERNAL ROTATION IN 1,3,5-TRINEOPENTYLBENZENES. 8. MOLECULAR MECHANICS CALCULATIONS. THEORETICAL EVIDENCE FOR ATTRACTIVE STERIC EFFECTS , 1976 .

[54]  E. Havinga,et al.  Conformation of non-aromatic ring compounds—XLVII , 1968 .

[55]  R. Cramer,et al.  Validation of the general purpose tripos 5.2 force field , 1989 .

[56]  R. Stōlevik,et al.  Molecular mechanics calculations of conformational structures, energies and barrier heights in chloro-and bromoalkanes , 1983 .

[57]  J. Hollas,et al.  The Ã1A′-X̃1A′ single vibronic level fluorescence and Raman spectra of styrene-β-D2 vapor and their use in determining the C(1)-C(α) torsional potential function in the X̃ state , 1982 .

[58]  T. Shimanouchi,et al.  Electron-diffraction study of rotational isomerism of methyl ethyl ketone , 1969 .

[59]  A. Bauder,et al.  Microwave spectrum, rotational constants and dipole moment of s-cis acrolein , 1982 .

[60]  Tommy Liljefors,et al.  RINGS — a general program to build ring systems , 1984 .

[61]  H. Bradford Thompson,et al.  Influence of Nonbonded Interactions on Molecular Geometry and Energy: Calculations for Hydrocarbons Based on Urey—Bradley Field , 1967 .