Computing f (A)b for matrix functions f

For matrix functions $f$ we investigate how to compute a matrix-vector product $f(A)b$ without explicitly computing $f(A)$. A general method is described that applies quadrature to the matrix version of the Cauchy integral theorem. Methods specific to the logarithm, based on quadrature, and fractional matrix powers, based on solution of an ordinary differential equation initial value problem, are also presented

[1]  Arthur Wouk Integral representation of the logarithm of matrices and operators , 1965 .

[2]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[3]  J. N. Lyness When not to use an automatic quadrature routine , 1983 .

[4]  Gene H. Golub,et al.  Matrix computations , 1983 .

[5]  A. Laub,et al.  Padé error estimates for the logarithm of a matrix , 1989 .

[6]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[7]  Benedetta Morini,et al.  Computational Techniques for Real Logarithms of Matrices , 1996, SIAM J. Matrix Anal. Appl..

[8]  G. Golub,et al.  Some large-scale matrix computation problems , 1996 .

[9]  Ya Yan Lu,et al.  Computing the logarithm of a symmetric positive definite matrix , 1998 .

[10]  Robert G. Edwards,et al.  Chiral fermions on the lattice , 1999, Parallel Comput..

[11]  Henk A. van der Vorst,et al.  Solution of f(A)x = b with projection methods for the matrix A , 2000 .

[12]  J. Baglama,et al.  Numerical approximation of the product of the square root of a matrix with a vector , 2000 .

[13]  Nicholas J. Higham,et al.  Matlab guide , 2000 .

[14]  A. Frommer,et al.  Numerical Challenges in Lattice Quantum Chromodynamics , 2000 .

[15]  W. Gander,et al.  Adaptive Quadrature—Revisited , 2000 .

[16]  Nicholas J. Higham,et al.  Approximating the Logarithm of a Matrix to Specified Accuracy , 2000, SIAM J. Matrix Anal. Appl..

[17]  Nicholas J. Higham,et al.  Evaluating Padé Approximants of the Matrix Logarithm , 2000, SIAM J. Matrix Anal. Appl..

[18]  H. V. D. Vorst,et al.  Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds , 2002, hep-lat/0202025.

[19]  Nicholas J. Higham,et al.  Matlab guide, Second Edition , 2005 .

[20]  L. Trefethen Spectra and pseudospectra , 2005 .

[21]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[22]  N. Higham Functions of a Matrix: Theory and Computation , 2006 .

[23]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .