Correlative study of plasma bubbles, evening equatorial ionization anomaly, and equatorial prereversal E × B drifts at solar maximum

[1] Previous ground observations have revealed a correlation that exists between equatorial plasma bubbles, evening equatorial ionization anomaly (EIA), and prereversal E × B drift velocity using latitudinal arrays of ionospheric sounders, such as in the Indian and American regions. Besides the ground measurements, the space-based observations also provide a convenient way to study the global-scale variations. On the basis of in situ data collected from DMSP, ROCSAT-1, and CHAMP satellites, we investigated the correlation of seasonal/longitudinal variations of plasma bubble (PB) occurrence, evening EIA, and prereversal E × B drifts on magnetically quiet days during the solar maximum years (2000–2002). In general, the observational results provide consistent evidences that the large-scale variations in seasonal/longitudinal distribution of evening EIA and PB occurrence rates are well-correlated with the observed evening prereversal E × B drifts and that some of the small-scale longitudinal variations (such as wave number-4 structure during equinox) of evening EIA exist before the occurrence of the prereversal enhancement and coincide with the daytime equatorial electrojet. In such cases, the small-scale longitudinal variation of PB occurrence rates may result from the evening EIA small-scale longitudinal structures. The evening prereversal E × B drifts, together with the longitudinal variations of evening EIA, are assumed to play a role in determining the longitudinal variations of equatorial and low-latitude PB occurrence rates.

[1]  Dale N. Anderson,et al.  Longitude structure of ionospheric total electron content at low latitudes measured by the TOPEX/Poseidon satellite , 1999 .

[2]  R. Dabas,et al.  Faraday polarization fluctuations and their dependence on post sunset secondary maximum and amplitude scintillations at Delhi , 2002 .

[3]  J. Aarons,et al.  The application of GPS observations to equatorial aeronomy , 2000 .

[4]  L. Paxton,et al.  Longitudinal structure of the vertical E × B drift and ion density seen from ROCSAT‐1 , 2007 .

[5]  K. Min,et al.  Global distribution of equatorial plasma bubbles in the premidnight sector during solar maximum as observed by KOMPSAT‐1 and Defense Meteorological Satellite Program F15 , 2005 .

[6]  C. Swenson,et al.  Effect of atmospheric tides on the morphology of the quiet time, postsunset equatorial ionospheric anomaly , 2006 .

[7]  J. A. Whalen,et al.  The equatorial anomaly: Its quantitative relation to equatorial bubbles, bottomside spread F, and , 2001 .

[8]  Hermann Lühr,et al.  Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides , 2007 .

[9]  J. A. Whalen Dependence of the equatorial anomaly and of equatorial spread F on the maximum prereversal E × B drift velocity measured at solar maximum , 2003 .

[10]  Frederick J. Rich,et al.  Large-scale convection patterns observed by DMSP , 1994 .

[11]  Harald U. Frey,et al.  Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV , 2005 .

[12]  Michael C. Kelley,et al.  The Earth's Ionosphere : Plasma Physics and Electrodynamics , 1989 .

[13]  M. A. Abdu,et al.  Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions , 1997 .

[14]  Jules Aarons,et al.  Microwave equatorial scintillation intensity during solar maximum , 1981 .

[15]  G. Walker Longitudinal structure of the F-region equatorial anomaly - a review. , 1981 .

[16]  S. Alex,et al.  Spread-F and ionization anomaly belt , 1989 .

[17]  P. J. Sultan,et al.  Linear theory and modeling of the Rayleigh‐Taylor instability leading to the occurrence of equatorial spread F , 1996 .

[18]  P. Alken,et al.  Spatio-temporal characterization of the equatorial electrojet from CHAMP, Ørsted, and SAC-C satellite magnetic measurements , 2007 .

[19]  Libo Liu,et al.  The correlation of longitudinal/seasonal variations of evening equatorial pre-reversal drift and of plasma bubbles , 2007 .

[20]  S. C. Garg,et al.  Evolution and dynamics of equatorial plasma bubbles: Relationships to ExB drift, postsunset total electron content enhancements, and equatorial electrojet strength , 2003 .

[21]  B. Reinisch,et al.  Comparison of CHAMP and Digisonde plasma frequencies at Jicamarca, Peru , 2007 .

[22]  Larry J. Paxton,et al.  Method for characterization of the equatorial anomaly using image subspace analysis of Global Ultraviolet Imager data , 2005 .

[23]  Ronald F. Woodman,et al.  Radar observations of F region equatorial irregularities , 1976 .

[24]  K. Yeh,et al.  Modeling of spaced‐receiver scintillation measurements , 1983 .

[25]  Cesar E. Valladares,et al.  Scintillations, plasma drifts, and neutral winds in the equatorial ionosphere after sunset , 1996 .

[26]  S. Basu,et al.  Measurement of the latitudinal distributions of total electron content during equatorial spread F events , 2001 .

[27]  J. M. Wu,et al.  Scientific Mission of the IPEI Payload Onboard ROCSAT-1 , 1999 .

[28]  J. A. Whalen,et al.  An equatorial bubble: Its evolution observed in relation to bottomside spread F and to the Appleton anomaly , 2000 .

[29]  W. J. Burke,et al.  A climatology of equatorial plasma bubbles from DMSP 1989–2004 , 2006 .

[30]  S. Alex,et al.  Association between equatorial and tropical spread-F , 2003 .

[31]  E. R. Paula,et al.  Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F , 1999 .

[32]  S. C. Garg,et al.  Evidence of the development and decay of a postsunset equatorial anomaly at low latitudes , 1984 .

[33]  R. Heelis,et al.  Global Distribution of Density Irregularities in the Equatorial Ionosphere , 1998 .

[34]  S. C. Garg,et al.  Growth and decay of a post-sunset equatorial anomaly at low latitudes: Control of E×B, neutral winds and daytime electrojet strength , 2006 .

[35]  C. Valladares,et al.  Theoretical relationship between maximum value of the post‐sunset drift velocity and peak‐to‐valley ratio of anomaly TEC , 2004 .

[36]  L. C. Gentile,et al.  DMSP observations of equatorial plasma bubbles in the topside ionosphere near solar maximum , 2001 .

[37]  F. S. Johnson,et al.  Occurrence of equatorial F region irregularities: Evidence for tropospheric seeding , 1998 .

[38]  Ludger Scherliess,et al.  Radar and satellite global equatorial F-region vertical drift model , 1999 .

[39]  J. A. Whalen,et al.  Linear dependence of the postsunset equatorial anomaly electron density on solar flux and its relation to the maximum prereversal E × B drift velocity through its dependence on solar flux , 2004 .

[40]  Michael C. Kelley,et al.  The earth's ionosphere , 1989 .

[41]  David N. Anderson,et al.  Forecasting the occurrence of ionospheric scintillation activity in the equatorial ionosphere on a day-to-day basis , 2004 .

[42]  L. C. Gentile,et al.  Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT‐1 , 2004 .

[43]  Chi-Kuang Chao,et al.  Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions , 2006 .

[44]  Larry J. Paxton,et al.  Morphology of the equatorial anomaly and equatorial plasma bubbles using image subspace analysis of Global Ultraviolet imager data , 2005 .

[45]  R. Sridharan,et al.  The role of post sunset vertical drifts at the equator in predicting the onset of VHF scintillations during high and low sunspot activity years , 2006 .

[46]  S. Maus,et al.  Longitudinal variation of the E‐region electric fields caused by atmospheric tides , 2006 .

[47]  C. Rino,et al.  Intensity scintillation parameters for characterizing transionospheric radio signals , 1982 .