The spatial and temporal evolution of primitive melt compositions within the Lac de Gras kimberlite field, Canada: Source evolution vs lithospheric mantle assimilation

[1]  A. Giuliani,et al.  Remnants of early Earth differentiation in the deepest mantle-derived lavas , 2020, Proceedings of the National Academy of Sciences.

[2]  A. Giuliani,et al.  Kimberlite Metasomatism of the Lithosphere and the Evolution of Olivine in Carbonate-rich Melts — Evidence from the Kimberley Kimberlites (South Africa) , 2020 .

[3]  A. Giuliani,et al.  Controls on the explosive emplacement of diamondiferous kimberlites: New insights from hypabyssal and pyroclastic units in the Diavik mine, Canada , 2020 .

[4]  Do Hee Keum,et al.  Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation , 2020, Science Advances.

[5]  W. Griffin,et al.  New constraints on the source, composition, and post-emplacement modification of kimberlites from in situ C–O–Sr-isotope analyses of carbonates from the Benfontein sills (South Africa) , 2020, Contributions to Mineralogy and Petrology.

[6]  A. Giuliani,et al.  The role of lithospheric heterogeneity on the composition of kimberlite magmas from a single field: The case of Kaavi-Kuopio, Finland , 2020 .

[7]  A. Giuliani,et al.  Kimberlites: From Deep Earth to Diamond Mines , 2019 .

[8]  L. Heaman,et al.  Dating Kimberlites: Methods and Emplacement Patterns Through Time , 2019, Elements.

[9]  D. Pearson,et al.  Kimberlites as Geochemical Probes of Earth’s Mantle , 2019 .

[10]  W. Griffin,et al.  Mantle-like oxygen isotopes in kimberlites determined by in situ SIMS analyses of zoned olivine , 2019 .

[11]  A. Giuliani,et al.  What is a Kimberlite? Petrology and Mineralogy of Hypabyssal Kimberlites , 2019 .

[12]  A. Giuliani,et al.  Petrogenesis of a Hybrid Cluster of Evolved Kimberlites and Ultramafic Lamprophyres in the Kuusamo Area, Finland , 2019, Journal of Petrology.

[13]  A. Giuliani,et al.  Kimberlites reveal 2.5-billion-year evolution of a deep, isolated mantle reservoir , 2019, Nature.

[14]  W. Powell,et al.  Kimberlite emplacement and mantle sampling through time at A154N kimberlite volcano, Diavik Diamond Mine: lessons from the deep , 2018, Mineralogy and Petrology.

[15]  G. Howarth Olivine megacryst chemistry, Monastery kimberlite: Constraints on the mineralogy of the HIMU mantle reservoir in southern Africa , 2018 .

[16]  A. Giuliani,et al.  Origin of complex zoning in olivine from diverse, diamondiferous kimberlites and tectonic settings: Ekati (Canada), Alto Paranaiba (Brazil) and Kaalvallei (South Africa) , 2018, Mineralogy and Petrology.

[17]  A. Giuliani Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide , 2018, Lithos.

[18]  B. Kjarsgaard,et al.  Cr-rich megacrysts of clinopyroxene and garnet from Lac de Gras kimberlites, Slave Craton, Canada – implications for the origin of clinopyroxene and garnet in cratonic lherzolites , 2018, Mineralogy and Petrology.

[19]  A. Giuliani,et al.  Crystallisation sequence and magma evolution of the De Beers dyke (Kimberley, South Africa) , 2018, Mineralogy and Petrology.

[20]  R. Drysdale,et al.  Kimberlite-related metasomatism recorded in MARID and PIC mantle xenoliths , 2018, Mineralogy and Petrology.

[21]  A. Giuliani,et al.  A new approach to reconstructing the composition and evolution of kimberlite melts: a case study of the archetypal Bultfontein kimberlite (Kimberley, South Africa) , 2018 .

[22]  S. S. Thakur,et al.  The P3 kimberlite and P4 lamproite, Wajrakarur kimberlite field, India: mineralogy, and major and minor element compositions of olivines as records of their phenocrystic vs xenocrystic origin , 2018, Mineralogy and Petrology.

[23]  S. Tappe,et al.  Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles , 2018 .

[24]  V. Kamenetsky,et al.  Monticellite in group-I kimberlites: Implications for evolution of parental melts and post-emplacement CO2 degassing , 2018 .

[25]  A. Giuliani,et al.  Tracking continental-scale modification of the Earth’s mantle using zircon megacrysts , 2017 .

[26]  S. Foley,et al.  The olivine macrocryst problem: New insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada , 2015 .

[27]  L. Heaman,et al.  Duration and periodicity of kimberlite volcanic activity in the Lac de Gras kimberlite field, Canada and some recommendations for kimberlite geochronology , 2015 .

[28]  L. Heaman,et al.  Precise Pb isotope ratio determination of picogram-size samples: A comparison between multiple Faraday collectors equipped with 1012 Ω amplifiers and multiple ion counters , 2015 .

[29]  A. Giuliani,et al.  Oxide, sulphide and carbonate minerals in a mantle polymict breccia: Metasomatism by proto-kimberlite magmas, and relationship to the kimberlite megacrystic suite , 2013 .

[30]  W. Griffin,et al.  Nature and timing of metasomatism in the stratified mantle lithosphere beneath the central Slave craton (Canada) , 2013 .

[31]  B. Kjarsgaard,et al.  Mantle transition zone input to kimberlite magmatism near a subduction zone: Origin of anomalous Nd–Hf isotope systematics at Lac de Gras, Canada , 2013 .

[32]  T. Nielsen,et al.  Digestion Fractional Crystallization (DFC): an Important Process in the Genesis of Kimberlites. Evidence from Olivine in the Majuagaa Kimberlite, Southern West Greenland , 2013 .

[33]  Charles H. Langmuir,et al.  The mean composition of ocean ridge basalts , 2013 .

[34]  Richard J. Brown,et al.  Eruption of kimberlite magmas: physical volcanology, geomorphology and age of the youngest kimberlitic volcanoes known on earth (the Upper Pleistocene/Holocene Igwisi Hills volcanoes, Tanzania) , 2012, Bulletin of Volcanology.

[35]  D. Dingwell,et al.  Kimberlite ascent by assimilation-fuelled buoyancy , 2012, Nature.

[36]  T. Plank,et al.  The Hf–Nd isotopic composition of marine sediments , 2011 .

[37]  S. Hart,et al.  Domains of depleted mantle: New evidence from hafnium and neodymium isotopes , 2011 .

[38]  S. H. Richardson,et al.  Start of the Wilson Cycle at 3 Ga Shown by Diamonds from Subcontinental Mantle , 2011, Science.

[39]  S. Ono,et al.  Slab melting versus slab dehydration in subduction-zone magmatism , 2011, Proceedings of the National Academy of Sciences.

[40]  M. Willbold,et al.  Formation of enriched mantle components by recycling of upper and lower continental crust , 2010 .

[41]  L. Heaman,et al.  Nature and evolution of the Slave Province subcontinental lithospheric mantleThis article is one of a series of papers published in this Special Issue on the theme Lithoprobe — parameters, processes, and the evolution of a continent. , 2010 .

[42]  A. Sobolev,et al.  Olivine, and the Origin of Kimberlite , 2010 .

[43]  J. Russell,et al.  Origin of olivine in kimberlite: Phenocryst or impostor? , 2009 .

[44]  B. Kjarsgaard,et al.  Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: Comparisons to a global database and applications to the parent magma problem , 2009 .

[45]  L. Heaman The application of U–Pb geochronology to mafic, ultramafic and alkaline rocks: An evaluation of three mineral standards , 2009 .

[46]  A. Bouvier,et al.  The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets , 2008 .

[47]  P. Roeder,et al.  Crystallization of Groundmass Spinel in Kimberlite , 2008 .

[48]  K. Sand,et al.  THE MAJUAGAA KIMBERLITE DIKE, MANIITSOQ REGION, WEST GREENLAND: CONSTRAINTS ON AN Mg-RICH SILICOCARBONATITIC MELT COMPOSITION FROM GROUNDMASS MINERALOGY AND BULK COMPOSITIONS , 2008 .

[49]  B. Kjarsgaard,et al.  Geochemical trends in kimberlites of the Ekati property, Northwest Territories, Canada : Insights on volcanic and resedimentation processes , 2008 .

[50]  B. Kjarsgaard,et al.  Stable isotope composition of magmatic and deuteric carbonate phases in hypabyssal kimberlite, Lac de Gras field, Northwest Territories, Canada , 2007 .

[51]  R. Creaser,et al.  Lu–Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: Evidence for Paleoproterozoic subduction beneath the Slave craton, Canada , 2007 .

[52]  M. Becker,et al.  Geochemistry of South African On- and Off-craton, Group I and Group II Kimberlites: Petrogenesis and Source Region Evolution , 2006 .

[53]  M. Willbold,et al.  Trace element composition of mantle end‐members: Implications for recycling of oceanic and upper and lower continental crust , 2006 .

[54]  E. Belousova,et al.  Crystallization of Cr-poor and Cr-rich megacryst suites from the host kimberlite magma: implications for mantle structure and the generation of kimberlite magmas , 2005 .

[55]  T. Nowicki,et al.  The geology of kimberlite pipes of the Ekati property, Northwest Territories, Canada , 2004 .

[56]  A. Menzies,et al.  Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, N.W.T., Canada: major element compositions and implications for the lithosphere beneath the central Slave craton , 2004 .

[57]  R. Barnett,et al.  Mineralogy of primary carbonate-bearing hypabyssal kimberlite, Lac de Gras, Slave Province, Northwest Territories, Canada , 2004 .

[58]  R. Creaser,et al.  Macrocrystal phlogopite Rb–Sr dates for the Ekati property kimberlites, Slave Province, Canada: evidence for multiple intrusive episodes in the Paleocene and Eocene , 2004 .

[59]  D. Dyck,et al.  The morphological characteristics of diamonds from the Ekati property, Northwest Territories, Canada , 2004 .

[60]  D. Canil,et al.  Intensive Variables in Kimberlite Magmas, Lac de Gras, Canada and Implications for Diamond Survival , 2004 .

[61]  W. Griffin,et al.  Lithosphere mapping beneath the North American plate , 2004 .

[62]  R. Carlson,et al.  Hf Isotope Systematics of Kimberlites and their Megacrysts: New Constraints on their Source Regions , 2004 .

[63]  E. Rohling,et al.  New neodymium isotope data quantify Nile involvement in Mediterranean anoxic episodes , 2004 .

[64]  D. Bell,et al.  Deep chemical structure of the southern African mantle from kimberlite megacrysts , 2004 .

[65]  M. Kopylova,et al.  Mantle Xenoliths from the Southeastern Slave Craton: Evidence for Chemical Zonation in a Thick, Cold Lithosphere , 2004 .

[66]  D. Bell,et al.  Petrogenesis of Group I Kimberlites from Kimberley, South Africa: Evidence from Bulk-rock Geochemistry , 2003 .

[67]  C. Isachsen,et al.  The decay constant of 176Lu determined from Lu-Hf and U-Pb isotope systematics of terrestrial Precambrian high-temperature mafic intrusions , 2003 .

[68]  V. Salters,et al.  Recycling oceanic crust: Quantitative constraints , 2003 .

[69]  K. Mezger,et al.  Calibration of the Lutetium-Hafnium Clock , 2001, Science.

[70]  B. Scaillet,et al.  Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust , 2001, Nature.

[71]  F. Albarède,et al.  Hf-Nd isotopic evolution of the lower crust , 2000 .

[72]  C. Langmuir,et al.  Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc , 2000 .

[73]  J. Russell,et al.  Primitive Magma From the Jericho Pipe, N.W.T., Canada: Constraints on Primary Kimberlite Melt Chemistry , 2000 .

[74]  B. Kjarsgaard,et al.  Timing of eastern North American kimberlite magmatism: continental extension of the Great Meteor hotspot track? , 2000 .

[75]  W. Griffin,et al.  Layered Mantle Lithosphere in the Lac de Gras Area, Slave Craton: Composition, Structure and Origin , 1999 .

[76]  T. Plank,et al.  Element transport from slab to volcanic front at the Mariana arc , 1997 .

[77]  B. Harte,et al.  The Jagersfontein Cr-poor megacryst suite―towards a model for megacryst petrogenesis , 1992 .

[78]  K. Condie,et al.  Sr, Nd, and Pb Isotopic Systematics in the Archean Low- to High-Grade Transition Zone of Southern India: Syn-Accretion vs. Post-Accretion Granulites , 1989, The Journal of Geology.

[79]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[80]  Berg Evidence for Near Surface Hypabyssal Emplacement , 2018 .

[81]  S. Foley,et al.  Primary Melt Compositions in the Earth's Mantle , 2018 .

[82]  T. Plank 4.17 – The Chemical Composition of Subducting Sediments , 2014 .

[83]  N. Arndt,et al.  Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array , 2008 .

[84]  S. Kurszlaukis,et al.  EARLY PROTEROZOIC METAMORPHOSED KIMBERLITES FROM GABON , 2003 .

[85]  A. H. Jaffey,et al.  Precision Measurement of Half-Lives and Specific Activities of U-235 and U238 , 1971 .